PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Heat pipe-cooled highly-concentrated multi-junction solar cell

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Concentrator photovoltaic (CPV) systems have proven the capability of competing with traditional photovoltaic (PV) systems due to their high efficiency and low area occupancy. Such CPV systems require efficient heat removal auxiliary systems, especially for medium and high optical concentration ratios. Operating a CPV system under a high optical concentration (ratio > 200 X) might require active cooling techniques, which have high operating costs and maintenance. On the other hand, heat pipes (HPs) are widely used in electronic devices for cooling purposes. This work discusses the possibility of operating a CPV system coupled with HPs as a passive cooling technique. Two different HPs with different lengths are used to compare cooling efficiency. Each HP length was tested either in a single or double configuration. Long HPs showed better heat removal compared to a traditional fin-cooling system. CVP cooling with HP systems enhanced the entire electrical output of the cell, mainly at high optical concentration ratios.
Rocznik
Strony
art. no. e149393
Opis fizyczny
Bibliogr. 26 poz., rys., tab., wykr.
Twórcy
  • Physics Department, College of Science, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
  • Physics Department, College of Science, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
  • Solar Physics Lab, National Research Institute of Astronomy and Geophysics, Cairo, Egypt
  • Physics Department, College of Science, Umm Al Qura University, Makkah, Kingdom of Saudi Arabia
  • Physics Department, Faculty of Science, Mansoura University, Mansoura, Egypt
Bibliografia
  • [1] Singh, G. K. Solar power generation by PV (photovoltaic) technology: A review. Energy 53, 1-13 (2013). https://doi.org/10.1016/j.energy.2013.02.057.
  • [2] Du, B., Hu, E. & Kolhe, M. Performance analysis of water cooled concentrated photovoltaic (CPV) system. Renew. Sustain. Energy Rev. 16, 6732-6736 (2012). https://doi.org/10.1016/j.rser.2012.09.007.
  • [3] Abo-Zahhad, E. M., Ookawara, S., Radwan, A., El-Shazly, A. H. & ElKady, M. F. Thermal and structure analyses of high concentrator solar cell under confined jet impingement cooling. Energy Convers. Manag. 176, 39-54 (2018). https://doi.org/10.1016/j.enconman.2018.09.005.
  • [4] Abo-Zahhad, E. M. et al. Performance, limits, and thermal stress analysis of high concentrator multi-junction solar cell under passive cooling conditions. Appl. Therm. Eng. 164, 114497 (2020). https://doi.org/10.1016/j.applthermaleng.2019.114497.
  • [5] Luque, A. & Hegedus, S. Handbook of Photovoltaic Science and Engineering. (John Wiley & Sons, 2011).
  • [6] Theristis, M. & O’Donovan, T. S. Electrical-thermal analysis of III–V triple-junction solar cells under variable spectra and ambient temperatures. Sol. Energy 118, 533-546 (2015). https://doi.org/10.1016/j.solener.2015.06.003.
  • [7] Anderson, W. G., Dussinger, P. M., Sarraf, D. B. & Tamanna, S. Heat Pipe Cooling of Concentrating Photovoltaic Cells. in 33rd IEEE Photovolatic Specialists Conference 1-6 (IEEE, 2008). https://doi.org/10.1109/PVSC.2008.4922577.
  • [8] Chen, J., Yang, L., Zhang, Z., Wei, J. & Yang, J. Optimization of a uniform solar concentrator with absorbers of different shapes. Sol. Energy 158, 396-406 (2017). https://doi.org/10.1016/j.solener.2017.09.061.
  • [9] Wang, S. et al. Cooling design and evaluation for photovoltaic cells within constrained space in a CPV/CSP hybrid solar system. Appl. Therm. Eng. 110, 369-381 (2017). https://doi.org/10.1016/j.applthermaleng.2016.08.196.
  • [10] Ibrahim, K. A., Luk, P. & Luo, Z. Cooling of concentrated photo-voltaic cells - a review and the perspective of pulsating flow cooling. Energies 16, 2842 (2023). https://doi.org/10.3390/en16062842.
  • [11] King, R. R. et al. Band-Gap-Engineered Architectures for High-Efficiency Multi-Junction Concentrator Solar Cells. in 24th European Photovoltaic Solar Energy Conference 1-7 (Spectrolab, Inc., 2009).
  • [12] Cotal, H. et al. III-V multi-junction solar cells for concentrating photovoltaics. Energy Environ. Sci. 2, 174-192 (2009). https://doi.org/10.1039/B809257E.
  • [13] Nishioka, K. et al. Annual output estimation of concentrator photovoltaic systems using high-efficiency InGaP/InGaAs/Ge triple-junction solar cells based on experimental solar cell’s characteristics and field-test meteorological data. Sol. Energy Mater. Sol. Cells 90, 57-67 (2006). https://doi.org/10.1016/j.solmat.2005.01.011.
  • [14] Qu, H. & Li, X. Temperature dependency of the fill factor in PV modules between 6 and 40 °C. J. Mech. Sci. Technol. 33, 1981-1986 (2019). http://doi.org/10.1007/s12206-019-0348-4.
  • [15] Singh, P. & Ravindra, N. M. Temperature dependence of solar cell performance - an analysis. Sol. Energy Mater. Sol. Cells 101, 36-45 (2012). https://doi.org/10.1016/j.solmat.2012.02.019.
  • [16] CDO-100 Concentrator Photovoltaic Cell. Spectrolab. (2008). https://www.yumpu.com/en/document/read/26489114/cdo-100-concentrator-photovoltaic-cell-spectrolab
  • [17] Min, C. et al. Thermal analysis and test for single concentrator solar cells. J. Semicond. 30, 044011 (2009). https://doi.org/10.1088/1674-4926/30/4/044011.
  • [18] Kinsey, G. S., Pien, P., Hebert, P. & Sherif, R. A. Operating characteristics of multi-junction solar cells. Sol. Energy Mater. Sol. Cells 93, 950-951 (2009). https://doi.org/10.1016/j.solmat.2008.11.053.
  • [19] Faghri, A. & Zhang, Y. 11-Two-Phase Flow and Heat Transfer. in Transport Phenomena in Multiphase Systems (eds. Faghri, A. & Zhang, Y.) 853-949 (Academic Press, Boston, 2006). https://doi.org/10.1016/B978-0-12-370610-2.50016-7.
  • [20] Reay, D., McGlen, R. & Kew, P. Heat Pipes: Theory, Design and Applications. (Butterworth-Heinemann, 2013).
  • [21] Sangdot, R. & Patel, H. A review on photovoltaic panel cooling using heat pipe. Int. J. Sci. Res. 1, 573-576 (2016). https://www.ijsdr.org/papers/IJSDR1605109.pdf.
  • [22] Micheli, L., Fernandez, E. F., Almonacid, F., Reddy, K. S. & Mallick, T. K. Enhancing ultra-high CPV passive cooling using least-material finned heat sinks. AIP Conf. Proc. 1679, 130003 (2015). https://doi.org/10.1063/1.4931563.
  • [23] Micheli, L., Senthilarasu, S., Reddy, K. S. & Mallick, T. K. Applicability of silicon micro-finned heat sinks for 500× concentrating photovoltaics systems. J. Mater. Sci. 50, 5378-5388 (2015). https://doi.org/10.1007/s10853-015-9065-2.
  • [24] Lashin, A., Al Turkestani, M. & Sabry, M. Concentrated photovoltaic/thermal hybrid system coupled with a thermoelectric generator. Energies 12, 2623 (2019). https://doi.org/10.3390/en12132623.
  • [25] Anderson, W., Tamanna, S., Sarraf, D., Dussinger, P. & Hoffman, R. Heat Pipe Cooling of Concentrating Photovoltaic (CPV) Systems. in 6th International Energy Conversion Engineering Conference (IECEC) TM-3 (American Institute of Aeronautics and Astro-nautics, Inc., 2008). https://doi.org/10.2514/6.2008-5672.
  • [26] Habeeb, L., Ghanim, D. & Muslim, F. Cooling photovoltaic thermal solar panel by using heat pipe at Baghdad climate. Int. J. Mech. Eng. 17, 171-185 (2017). https://api.semanticscholar.org/CorpusID:166224696.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1564400-caf6-44c9-9774-6acf5289010b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.