PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Metallization of ceramic materials based on the kinetic energy of detonation waves

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The paper presents an innovatory low-energy detonation-spraying method suitable for the metallization of ceramic materials, in which the energy necessary for joining the metallic coating with the ceramic is delivered in a mechanical way. In the proposed method, the metallic particles, shot from the spraying gun, impinge onto the ceramic substrate with a high velocity, and their kinetic energy is transformed into heat delivered in a specified portion directly to the region of the metal/ceramic joint being formed. The stress distribution and the temperature field at the coating/substrate interface were analyzed also numerically with the aim to optimize the metallization process parameters so as to stimulate the formation of the coating/ceramic joint and, at the same time, to control the region of heat dissipation, the temperature, and the stress state induced in the joint.
Rocznik
Strony
449--456
Opis fizyczny
Bibliogr. 35 poz., rys., tab., wykr., fot., il.
Twórcy
  • Department of Welding Engineering, Institute of Manufacturing Processes, Faculty of Production Engineering, Warsaw University of Technology, 95 Narbutta St., 05-075 Warsaw, Poland
autor
  • Department of Welding Engineering, Institute of Manufacturing Processes, Faculty of Production Engineering, Warsaw University of Technology, 95 Narbutta St., 05-075 Warsaw, Poland
  • Polish Academy of Sciences, 1 Defilad Sq., 00-901 Warsaw, Poland
Bibliografia
  • [1] M. Chmielewski and W. Weglewski, “Comparison of experimental and modelling results of thermal properties in Cu-AlN composite materials”, Bull. Pol. Ac.: Tech. 61 (2), 507-514 (2013).
  • [2] L. Salbut, M. Kujawinska, M. Jozwik, and D. Golanski, “Investigation of ceramic-to-metal joint properties by hybrid moire interferometry/FEM analysis”, Interferometry ’99. Applications. Book Series: Proc. Society of Photo-Optical Instrumentation engineers SPIE 3745, 298-306 (1999).
  • [3] W. Wlosinski and T. Chmielewski, “Plasma-hardfaced chromium protective coatings-effect of ceramic reinforcement on their wettability by glass”, 3rd Int. Conf. on Surface Engineering, Contributions of Surface Engineering to Modern Manufacturing and Remanufacturing 1, 48-53 (2002).
  • [4] J. Iwaszko, K. Kudła, and M. Szafarska, “Remelting treatment of the non-conductive oxide coatings by means of the modified GTAW method”, Surface & Coatings Technology 206, 2845-2850 (2012).
  • [5] J. Zimmerman, Z. Lindemann, D. Golański, T. Chmielewski, and W. Włosiński, “Modeling residual stresses generated in Ti coating thermally sprayed on Al2O3 substrates”, Bull. Pol. Ac.: Tech. 61 (2), 515-525 (2013).
  • [6] J. Piekoszewski, A. Krajewski, F. Prokert, J. Senkara, J. Stanisławski, L. Waliś, Z. Werner, and W. Włosiński, “Brazing of alumina ceramics modified by pulsed plasma beams combined with arc PVD treatment”, Vacuum 70, 307-312 (2003).
  • [7] K. Zdunek, “Concept, techniques, deposition mechanism of impulse plasma deposition - A short review”, Surface & Coatings Technology 201, 4813-4816 (2007).
  • [8] M. Barlak, W. Olesińska, J. Piekoszewski, Z. Werner, M. Chmielewski, J. Jagielski, D. Kaliński, B. Sartowska, and K. Borkowska, “Ion beam modification of ceramic component prior to formation of AlN-Cu joints by direct bonding process”, Surface & Coatings Technology 201 (19-20), 8317-8321 (2007).
  • [9] D. Golanski, “Temperature distribution in a cylindrical Al2O3- steel joint during the vacuum brazing cycle”, J. Materials Processing Technology 56 (1-4), 945-954 (1996).
  • [10] K. Pietrzak, D. Kaliński, M. Chmielewski, T. Chmielewski, W. Włosiński, and K. Choręgiewicz, “Processing of intermetallics with Al2O3 or steel joints obtained by friction welding technique”, Proc. 12th Conf. Eur. Ceramic Society - ECerS XII, CD-ROM (2011).
  • [11] M. Chmielewski, J. Dutkiewicz, D. Kaliński, L. Litynska- Dobrzynska, K. Pietrzak, and A. Strojny-Nedza, “Microstructure and properties of hot-pressed molybdenum-alumina composites”, Archives of Metallurgy and Materials 57 (3), 687-693 (2012).
  • [12] T. Chmielewski and D. Golański, “New method of in-situ fabrication of protective coatings based on Fe-Al intermetallic compounds”, Proc. Institution of Mechanical Engineers, J. Engineering B, 225 (B4), 611-616 (2011).
  • [13] D. Golański, “Modelling of thermal stresses in ceramic-metal joints”, Scientific Papers of Warsaw University of Technology. Mechanic Series 222, 1-170 (2008), (in Polish).
  • [14] D. Kaliński, M. Chmielewski, K. Pietrzak, and K. Choregiewicz, “An influence of mechanical mixing and hot-pressing on properties of NiAl/Al2O3 composite”, Archives of Metallurgy and Materials 57 (3), 695-702 (2012).
  • [15] W. Weglewski, M. Basista, M. Chmielewski, and K. Pietrzak, “Modeling of thermally induced damage in the processing of Cr-Al2O3 composites”, Composites Part B - Engineering 43 (2), 255-264 (2012).
  • [16] J. Senkara, “Activated joining processes”, Welding Bulletin of Silesian University of Technology 4, 32-35 (2005), (in Polish).
  • [17] T. Chmielewski, D. Golański, W. Włosiński, and J. Zimmerman, “Utilizing the energy of kinetic friction for the metallization of ceramics”, Bull. Pol. Ac.: Tech. 63 (1), 201-208 (2015).
  • [18] J. Senkara, “Control the energy of adhesion between the molybdenum and tungsten and the liquid metals in the joining process”, Scientific Papers of Warsaw University of Technology. Mechanic Series 156, CD-ROM (1993), (in Polish).
  • [19] K. Adamus, Z. Kucharczyk, K. Wojsyk, and K. Kudla, “Numerical analysis of electron beam welding of different grade titanium sheets”, Computational Materials Science 77, 286-294 (2013).
  • [20] A. Krajewski, W. Wlosinski, T. Chmielewski, and P. Kołodziejczak, “Ultrasonic-vibration assisted arc-welding of aluminum alloys”, Bull. Pol. Ac.: Tech. 60 (4), 841-852 (2013).
  • [21] J.-Guo Li, “Wetting of ceramic materials by liquidsilicon, aluminum and metallic melts containing titanium and other reactive elements”, Ceramics Int. 20 (6), 391-412 (1994).
  • [22] P. Kristalis, L. Coudurier, and N. Eustathoppoulos, “Contribution to the study of reactive wetting in the CuTi/Al2O3 system”, J. Material Science 26, 3400-3408 (1991).
  • [23] W. Olesińska, D. Kaliński, M. Chmielewski, R. Diduszko, and W. Włosiński, “Influence of titanium on the formation of a “barrier” layer during joining an AlN ceramic with copper by the CDB technique”, J. Materials Science - Materials in Electronics 17 (10), 781-788 (2006).
  • [24] X.B. Zhou amd J. Th. De Hosson, “Reactive wetting of liquid metals on ceramic substrates”, Acta Mater. 44 (2), 421-426 (1996).
  • [25] C. Senderowski and Z. Bojar, “Gas detonation spray forming of Fe-Al. coatings in the presence of interlayer”, Surface & Coatings Technology 202, 3538-3548 (2002).
  • [26] T. Chmielewski, D. Golański, and G. Gontarz, “Measurement of residual stresses in thermally sprayed metallic coatings”, Welding Review 83 (11), 59-64 (2011), (in Polish).
  • [27] T. Chmielewski, D. Golański, and W. Wysoczański, “Deposition of titanium coatings on the ceramic substrates by the D-gun spraying method”, Maszinoznawstwo 1 (139), 44-77 (2009).
  • [28] T. Chmielewski and D. Golański, “Selected properties of Ti coatings deposited on ceramic AlN substrates by thermal spraying”, Welding Int. 27 (8), 604-609 (2013).
  • [29] T. Babul, Basis of the Process The Detonation Spraying of Coatings NiCrBSi and WC/Co, Institute of Precision Mechanics, Warsaw, 2011.
  • [30] J.R. Davis, Handbook of Thermal Spray Technology, ASM International, New York, 2004.
  • [31] S. Kuroda, J. Kawakita, M. Watanabe, and H. Katanoda, “Warm spraying-a novel coating process based on highvelocity impact of solid particles”, Science and Technology of Advanced Materials 9, 17-21 (2008).
  • [32] L. Pawlowski, The Science and Engineering of Thermal Spray Coatings, John Wiley & Sons, New York, 1995.
  • [33] G. Slack, R. Tanzilli, R. Pohl, and J. Vandersande, “The intrinsic thermal conductivity of AlN”, J. Phys. Chem. Solids 48 (7), 641-647 (1987).
  • [34] J. Stokes and L. Looney, “Residual stress in HVOF thermally sprayed thick deposits”, Surface and Coatings Technology 18, 177-178 (2004).
  • [35] H. Tabbara, S. Gu, and D.G. McCartney, “Computational modelling of titanium particles in warm spray”, Computers & Fluids 44, 358-368 (2011).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d14fbcab-07d7-4e39-a126-e0328b878d76
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.