PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Utilisation of waste glass from solar thermal collectors for the production of polymer concrete

Treść / Zawartość
Identyfikatory
Warianty tytułu
PL
Wykorzystanie odpadów szklanych z kolektorów słonecznych do produkcji betonu polimerowego
Języki publikacji
EN
Abstrakty
EN
The article discusses the use of waste tempered glass from damaged or decommissioned thermal solar collectors to produce polymer concretes. The waste underwent mechanical recycling to obtain powders of alternative grain sizes: below 2.0 mm and below 0.5 mm. To produce the polymer concrete, ground glass waste served as the fine fraction, and sandstone gravel as the coarse fraction. An epoxy resin acted as the binder for the resulting composite. The research conducted has demonstrated that glass waste from solar collectors can be successfully utilised as a fine fraction in polymer concrete technologies. It was observed that there are no significant differences between the grains at 0.5 mm and 2.0 mm, and both fractions yield the desired results. The resulting polymer concretes are characterised by high mechanical strength, significantly surpassing the properties of typical cement concretes. The compressive strength is at 110.7 MPa, and the flexural strength is at 41.2 MPa. The proposed recycling method allows for the effective management of waste that is difficult to reuse on an industrial scale.
PL
W artykule omówiono wykorzystanie odpadów ze szkła z uszkodzonych lub wycofanych z eksploatacji kolektorów słonecznych do produkcji betonu polimerowego. Odpady te poddano mechanicznemu recyklingowi, w celu uzyskania proszków o różnych frakcjach: poniżej 2,0 mm i poniżej 0,5 mm. Do produkcji betonu polimerowego użyto odpady szklane jako drobną frakcję, a żwir jako frakcję grubą. Żywica epoksydowa pełniła rolę spoiwa w powstałym kompozycie. Przeprowadzone badania wykazały, że odpady szklane z kolektorów słonecznych mogą być z powodzeniem wykorzystywane jako drobna frakcja kruszywa w technologii betonu polimerowego. Zaobserwowano, że nie ma znaczących różnic między ziarnami o wielkości 0,5 mm i 2,0 mm, a obie frakcje dają pożądane rezultaty. Powstałe betony polimerowe charakteryzują się wysoką wytrzymałością mechaniczną, znacznie przewyższającą właściwości typowych betonów cementowych. Wytrzymałość na ściskanie wynosi 110,7 MPa, a wytrzymałość na zginanie 41,2 MPa. Proponowana metoda recyklingu pozwala na efektywne zarządzanie odpadami, które są trudne do ponownego wykorzystania na skalę przemysłową.
Rocznik
Strony
87--97
Opis fizyczny
Bibliogr. 32 poz., fig., tab.
Twórcy
  • Faculty of Materials Engineering; Silesian University of Technology; Katowice
  • Faculty of Materials Engineering; Silesian University of Technology; Katowice
  • Faculty of Materials Engineering; Silesian University of Technology; Katowice
  • Faculty of Materials Engineering; Silesian University of Technology; Katowice
Bibliografia
  • 1. Soteris Kalogirou A., “Solar thermal collectors and applications”, Progress in Energy and Combustion Science, vol. 30, (2004), pp. 231-295. https://doi.org/10.1016/j.pecs.2004.02.001
  • 2. Battisti R., Corrado A., “Environmental assessment of solar thermal collectors with integrated water storage”, Journal of Cleaner Production, vol. 13, (2005), pp. 1295-1300. https://doi.org/10.1016/j.jclepro.2005.05.007
  • 3. Lamnatou C., Notton G., Chemisana D., Cristofari C., “Life cycle analysis of a building-integrated solar thermal collector, based on embodied energy and embodied carbon methodologies”, Energy and Buildings, vol. 84, (2014), pp. 378-387. https://doi.org/10.1016/j.enbuild.2014.08.011
  • 4. Tian Y., Zhao C.Y., “A review of solar collectors and thermal energy storage in solar thermal applications”, Applied Energy, vol. 104, (2013), pp. 538-553. https://doi.org/10.1016/j.apenergy.2012.11.051
  • 5. Lamnatou Chr., Motte F., Notton G., Chemisana D., Cristofari C., “Cumulative energy demand and global warming potential of a building-integrated solar thermal system with/without phase change material”, Journal of Environmental Management, vol. 212, (2018), pp. 301-310. https://doi.org/10.1016/j.jenvman.2018.01.027
  • 6. Tavakoli D., Hashempour M., Heidari A., “Use of waste materials in concrete: A review”, Pertanika J. Sci. Technol, vol. 26(2), (2018), pp. 2499-522.
  • 7. Barbuta M., Rujanu M., Nicuta A., “Characterization of polymer concrete with different wastes additions”, Procedia Technology, vol. 22, (2016), pp. 407-412. https://doi.org/10.1016/j.protcy.2016.01.069
  • 8. Shi C., Zheng K., “A review on the use of waste glasses in the production of cement and concrete”, Resources, Conservation and Recycling, vol. 52(2), (2007), pp. 234-247. https://doi.org/10.1016/j.resconrec.2007.01.013
  • 9. Jani Y., Hogland W., “Waste glass in the production of cement and concrete–A review”, Journal of Environmental Chemical Engineering, vol. 2(3), (2014), pp. 1767-1775. https://doi.org/10.1016/j.jece.2014.03.016
  • 10. Shayan A., Xu A., “Value-added utilisation of waste glass in concrete”, Cement and Concrete Research, vol. 34(1), (2004), pp. 81-89. https://doi.org/10.1016/S0008-8846(03)00251-5
  • 11. Shao Y., Lefort T., Moras S., Rodriguez D., “Studies on concrete containing ground waste glass”, Cement and Concrete Research, vol. 30(1), (2000), pp. 91-100. https://doi.org/10.1016/S0008-8846(99)00213-6
  • 12. Dawood A. O., Hayder A. K., Falih R. S., “Physical and mechanical properties of concrete containing PET wastes as a partial replacement for fine aggregates”, Case Studies in Construction Materials, vol. 14, (2021), e00482. https://doi.org/10.1016/j.cscm.2020.e00482
  • 13. Zehil G. P., Assaad J. J., “Feasibility of concrete mixtures containing cross-linked polyethylene waste materials”, Construction and Building Materials, vol. 226, (2019), pp. 1-10. https://doi.org/10.1016/j.conbuildmat.2019.07.285
  • 14. Islam M. J., Shahjalal M., Haque N. M. A., “Mechanical and durability properties of concrete with recycled polypropylene waste plastic as a partial replacement of coarse aggregate”, Journal of Building Engineering, vol. 54, (2022), 104597. https://doi.org/10.1016/j.jobe.2022.104597
  • 15. Li Z., Li F., Li J.S., “Properties of concrete incorporating rubber tyre particles”, Magazine of Concrete Research, vol. 50(4), (1998), pp. 297-304. https://doi.org/10.1680/macr.1998.50.4.297
  • 16. Strukar K., Šipoš T. K., Miličević I., Bušić R., “Potential use of rubber as aggregate in structural reinforced concrete element–A review”, Engineering Structures, vol. 188, (2019), pp. 452-468. https://doi.org/10.1016/j.engstruct.2019.03.031
  • 17. Siddika A., Al Mamun M. A., Alyousef R., Amran Y. M., Aslani F., Alabduljabbar H., “Properties and utilizations of waste tire rubber in concrete: A review”, Construction and Building Materials, vol. 224, (2019), pp. 711-731. https://doi.org/10.1016/j.conbuildmat.2019.07.108
  • 18. Medina C., De Rojas M. S., Frías M., “Reuse of sanitary ceramic wastes as coarse aggregate in eco-efficient concretes”, Cement and Concrete Composites, vol. 34(1), (2012), pp. 48-54. https://doi.org/10.1016/j.cemconcomp.2011.08.015
  • 19. Debieb F., Kenai S., “The use of coarse and fine crushed bricks as aggregate in concrete”, Construction and Building Materials, vol. 22(5), (2008), pp. 886-893. https://doi.org/10.1016/j.conbuildmat.2006.12.013
  • 20. Topcu I. B., “Physical and mechanical properties of concretes produced with waste concrete”, Cement and Concrete Research, vol. 27(12), (1997), pp. 1817-1823. https://doi.org/10.1016/S0008-8846(97)00190-7
  • 21. Topcu I. B., Şengel S., “Properties of concretes produced with waste concrete aggregate”, Cement and Concrete Research, vol. 34(8), (2004), pp. 1307-1312. https://doi.org/10.1016/j.cemconres.2003.12.019
  • 22. Shafigh P., Mahmud H. B., Jumaat M. Z., Zargar M., “Agricultural wastes as aggregate in concrete mixtures–A review”, Construction and Building Materials 2014, vol. 53, (2014), pp. 110-117. https://doi.org/10.1016/j.conbuildmat.2013.11.074
  • 23. Mannan M. A., Ganapathy C., “Concrete from an agricultural waste-oil palm shell (OPS)”, Building and Environment, vol. 39(4), (2004), pp. 441-448. https://doi.org/10.1016/j.buildenv.2003.10.007
  • 24. Kusuma G. H., Budidarmawan J., Susilowati A., “Impact of concrete quality on sustainability”, Procedia Engineering 2015, vol. 125, (2015), pp. 754-759. https://doi.org/10.1016/j.proeng.2015.11.122
  • 25. Bandow N., Gartiser S., Ilvonen O., Schoknecht U., “Evaluation of the impact of construction products on the environment by leaching of possibly hazardous substances”, Environmental Sciences Europe, vol. 30(1), (2018), pp. 1-12. https://doi.org/10.1186/s12302-018-0144-2
  • 26. Togerö Å., “Leaching of hazardous substances from additives and admixtures in concrete”, Environmental Engineering Science, vol. 23(1), (2006), pp. 102-117. https://doi.org/10.1089/ees.2006.23.102
  • 27. Bedi R., Chandra R., Singh S. P.. “Mechanical properties of polymer concrete”, Journal of Composites, vol. 13, (2013), 1-12. https://doi.org/10.1155/2013/948745
  • 28. Nodehi M., “Epoxy, polyester and vinyl ester based polymer concrete: a review”, Innovative Infrastructure Solutions, 7(1), (2022), 64. https://doi.org/10.1007/s41062-021-00661-3
  • 29. Ardente F., Beccali G., Cellura M., Brano V. L., “Life cycle assessment of a solar thermal collector”, Renewable Energy, 30(7), (2005), 1031-1054. https://doi.org/10.1016/j.renene.2004.09.009
  • 30. Li Y., Zhang J., Cao Y., Hu Q., Guo X., “Design and evaluation of light-transmitting concrete (LTC) using waste tempered glass: A novel concrete for future photovoltaic road”, Construction and Building Materials 2021, vol. 280, (2021), 122551. https://doi.org/10.1016/j.conbuildmat.2021.122551
  • 31. Shah A. A., Ribakov Y., “Recent trends in steel fibered high-strength concrete”, Materials & Design, vol. 32(8-9), (2011), pp. 4122-4151. https://doi.org/10.1016/j.matdes.2011.03.030
  • 32. Drzymała T., Jackiewicz-Rek W., Gałaj J., Šukys R., “Assessment of mechanical properties of high strength concrete (HSC) after exposure to high temperature”, Journal of Civil Engineering and Management, vol. 24(2), (2018), pp. 138-144. https://doi.org/10.3846/jcem.2018.457
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1493866-920c-4f70-a3ef-5123ff130869
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.