Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The present numerical study is concerned with the impact of fin shape design on the thermal efficiency of phase change material (PCM)-based thermal energy storage (TES) unit, assuming the same surface area occupied by fins. Comparison of two different finned TES units equipped with rectangular and triangular fin shapes, respectively, showed significant enhancements in PCM melting activity. Comparative analysis demonstrated that triangular fin shape lowers PCM melting time by 12.64% for equivalent fin numbers, and by 15.38% for equal fin lengths due to the increased heat transfer area provided by the triangular shape. Further examination of fins with triangular shape in terms of spacing and length, under fixed thickness and size parameters, revealed significant reduction in melting time with increasing fins length. Notably, a 50.75% decrease in melting time was achieved by decreasing the number of fins to 20 while increasing fin length to 10 mm. Moreover, maintaining heat transfer fluid (HTF) temperature 20 K higher than the melting PCM temperature maximizes TES thermal efficiency. These outcomes emphasize the importance of optimizing fin shape design for enhancing heat transfer without affecting the energy storage capacity of TES systems, with potential applications in thermal management systems.
Wydawca
Czasopismo
Rocznik
Tom
Strony
189--211
Opis fizyczny
Bibliogr. 45 poz., rys., tab.
Twórcy
autor
- Tissemsilt University, Faculty of Sciences and Technology, Tissemsilt, Algeria
- Mechanical Engineering, Materials and Structures Laboratory, Tissemsilt, Algeria
autor
- Tissemsilt University, Faculty of Sciences and Technology, Tissemsilt, Algeria
- Laboratory of Smart Structure, University of AinTemouchent, AinTemouchent, Algeria
autor
- Tissemsilt University, Faculty of Sciences and Technology, Tissemsilt, Algeria
- Mechanical Engineering, Materials and Structures Laboratory, Tissemsilt, Algeria
Bibliografia
- [1] V. Bhatale, N. Vivekananda, and C. Shriramshastri. Experimental assessment of a PCM toair heat exchanger storage system for building ventilation applications. International Journal of Current Engineering and Technology, 6(spec.iss.5):413–418, 2016. doi: 10.14741/Ijcet/22774106/spl.5.6.2016.77.
- [2] M. Ryms and E. Klugmann-Radziemska. Possibilities and benefits of a new method of modifying conventional building materials with phase-change materials (PCMs). Construction and Building Materials, 211:1013–1024, 2019. doi: 10.1016/j.conbuildmat.2019.03.277.
- [3] F. Souayfane, F. Fardoun, and P.H. Biwole. Phase change materials (PCM) for cooling applications in buildings: A review. Energy and Buildings, 129:396–431, 2016. doi: 10.1016/j.enbuild.2016.04.006.
- [4] N.I. Ibrahim, F.A. Al-Sulaiman, S. Rahman, B.S. Yilbas, and A.Z. Sahin. Heat transfer enhancement of phase change materials for thermal energy storage applications: A critical review. Renewable and Sustainable Energy Reviews, 74:26–50, 2017. doi: 10.1016/j.rser.2017.01.169.
- [5] A. Sciacovelli, F. Gagliardi, and V. Verda. Maximization of performance of a PCM ltent heat storage system with innovative fins. Applied Energy, 137:707–715, 2015. doi: 10.1016/j.apenergy.2014.07.015.
- [6] C. Zhang, J. Li, and Y. Chen. Improving the energy discharging performance of a latent heat storage (LHS) unit using fractal-tree-shaped fins. Applied Energy, 259:114102, 2020. doi: 10.1016/j.apenergy.2019.114102.
- [7] X. Yang, Z. Lu, Q. Bai, Q. Zhang, L. Jin, and J. Yan. Thermal performance of a shell-and-tub latent heat thermal energy storage unit: Role of annular fins. Applied Energy, 202:558–570, 2017. doi: 10.1016/j.apenergy.2017.05.007.
- [8] C. Ji, Z. Qin, Z. Low, S. Dubey, F. H. Choo, and F. Duan. Non-uniform heat transfer suppression to enhance PCM melting by angled fins. Applied Thermal Engineering, 129:269–279, 2018. doi: 10.1016/j.applthermaleng.2017.10.030.
- [9] J. Guo, Z. Liu, Z. Du, J. Yu, X. Yang, and J. Yan. Effect of fin-metal foam structure on thermal energy storage: An experimental study. Renewable Energy, 172: 57–70, 2021. doi: 10.1016/j.renene.2021.03.018.
- [10] N. Zhang and Y. Yuan. Synthesis and thermal properties of nanoencapsulation of paraffin as phase change material for latent heat thermal energy storage. Energy and Built Environment, 1(4):410–416, 2020. doi: 10.1016/j.enbenv.2020.04.003.
- [11] N.S. Bondareva, B. Buonomo, O. Manca, and M.A. Sheremet. Heat transfer inside cooling system based on phase change material with alumina nanoparticles. Applied Thermal Engineering, 144:972–981, 2018. doi: 10.1016/j.applthermaleng.2018.09.002.
- [12] M. Ghalambaz, H. Jin, A. Bagheri, O. Younis, and D. Wen. Convective flow and heat transfer of nano-encapsulated phase change material (NEPCM) dispersions along a vertical surface. Facta Universitatis, Series: Mechanical Engineering, 20(3):519–538, 2022. doi: 10.22190/FUME220603034G.
- [13] I. Daou, L. El-Kaddadi, O. Zegaoui, M. Asbik, and N. Zari. Structural, morphological and thermal properties of novel hybrid-microencapsulated phase change materials based on Fe2O3, ZnO and TiO2 nanoparticles for latent heat thermal energy storage applications. Journal of Energy Storage, 17:84–92, 2018. doi: 10.1016/j.est.2018.02.011.
- [14] Z. Huang, X. Gao, T. Xu, Y. Fang, and Z. Zhang. Thermal property measurement and heat storage analysis of LiNO3/KCl – expanded graphite composite phase change material. Applied Energy, 115:265–271, 2014. doi: 10.1016/j.apenergy.2013.11.019.
- [15] K. Merlin, J. Soto, D. Delaunay, and L. Traonvouez. Industrial waste heat recovery using an enhanced conductivity latent heat thermal energy storage. Applied Energy, 183:491–503, 2016. doi: 10.1016/j.apenergy.2016.09.007.
- [16] V. Joshi and M.K. Rathod. Experimental and numerical assessments of thermal transport in fins and metal foam infused latent heat thermal energy storage systems: A comparative evaluation. Applied Thermal Engineering, 178:115518, 2020. doi: 10.1016/j.applthermaleng.2020.115518.
- [17] H. Masoumi, R. Haghighi Khoshkhoo, and S.M. Mirfendereski. Experimental and numeri- cal investigation of melting/solidification of nano-enhanced phase change materials in shell & tube thermal energy storage systems. Journal of Energy Storage, 47:103561, 2022. doi: 10.1016/j.est.2021.103561.
- [18] S.Z. Tang, H.Q. Tian, J.J. Zhou, and H. Li. Evaluation and optimization of melting performance in a horizontal thermal energy storage unit with non-uniform fins. Journal of Energy Storage, 33:102124, 2021. doi: 10.1016/j.est.2020.102124.
- [19] M. Kazemi, M.J. Hosseini, A.A. Ranjbar, and R. Bahrampoury. Improvement of longitudinal fins configuration in latent heat storage systems. Renewable Energy, 116(A):447–457, 2018. doi: 10.1016/j.renene.2017.10.006
- [20] H.B. Mahood, M.S. Mahdi, A.A. Monjezi, A.A. Khadom, and A.N. Campbell. Numerical investigation on the effect of fin design on the melting of phase change material in a horizontal shell and tube thermal energy storage. Journal of Energy Storage, 29:101331, 2020. doi: 10.1016/j.est.2020.101331.
- [21] A.H.N. Al-Mudhafar, A.F. Nowakowski, and F.C.G.A. Nicolleau. Performance enhancement of PCM latent heat thermal energy storage system utilizing a modified webbed tube heat exchanger. Energy Reports, 6(suppl.5):76–85, 2020. doi: 10.1016/j.egyr.2020.02.030.
- [22] T. Bouhal, S. ed-Dîn Fertahi, T. Kousksou, and A. Jamil. CFD thermal energy storage enhancement of PCM filling a cylindrical cavity equipped with submerged heating sources. Journal of Energy Storage, 18:360–370, 2018. doi: 10.1016/j.est.2018.05.015.
- [23] J. Zheng, J. Wang, T. Chen, and Y. Yu. Solidification performance of heat exchanger with tree- shaped fins. Renewable Energy, 150:1098–1107, 2020. doi: 10.1016/j.renene.2019.10.091.
- [24] M. Zhao, Y. Tian, M. Hu, F. Zhang, and M. Yang. Topology optimization of fins for en- ergy storage tank with phase change material. Numerical Heat Transfer, Part A: Applications, 77(3):284–301, 2020. doi: 10.1080/10407782.2019.1690338.
- [25] A. Pizzolato, A. Sharma, K. Maute, A. Sciacovelli, and V. Verda. Topology optimization for heat transfer enhancement in Latent Heat Thermal Energy Storage. International Journal of Heat and Mass Transfer, 113:875–888, 2017. doi: 10.1016/j.ijheatmasstransfer.2017.05.098.
- [26] A. Pizzolato, A. Sharma, R. Ge, K. Maute, V. Verda, and A. Sciacovelli. Maximization of performance in multi-tube latent heat storage – Optimization of fins topology, effect of materials selection and flow arrangements. Energy, 203:114797, 2020. doi: 10.1016/j.energy.2019.02.155.
- [27] Y. Tian, et al. Bionic topology optimization of fins for rapid latent heat thermal energy storage. Applied Thermal Engineering, 194:117104, 2021. doi: 10.1016/j.applthermaleng.2021.117104.
- [28] S.M. Borhani, M.J. Hosseini, A.A. Ranjbar, and R. Bahrampoury. Investigation of phase change in a spiral-fin heat exchanger. Applied Mathematical Modelling, 67:297–314, 2019. doi: 10.1016/j.apm.2018.10.029.
- [29] S. Zhang, L. Pu, L. Xu, R. Liu, and Y. Li. Melting performance analysis of phase change materials in different finned thermal energy storage. Applied Thermal Engineering, 176:115425, 2020. doi: 10.1016/j.applthermaleng.2020.115425.
- [30] M. Ghalambaz, J.M. Mahdi, A. Shafaghat, A.H. Eisapour, O. Younis, P.T. Sardari, and W. Yaici. Effect of twisted fin array in a triple-tube latent heat storage system during the charging mode. Sustainability, 13(5):2685, 2021. doi: 10.3390/su13052685.
- [31] S. Yao and X. Huang. Study on solidification performance of PCM by longitudinal triangular fins in a triplex-tube thermal energy storage system. Energy, 227:120527, 2021. doi: 10.1016/j.energy.2021.120527.
- [32] A.M. Abdulateef, S. Mat, K. Sopian, J. Abdulateef, and A.A. Gitan. Experimental and computational study of melting phase-change material in a triplex tube heat exchanger with longitudinal/triangular fins. Solar Energy, 155:142–153, 2017. doi: 10.1016/j.solener.2017.06.024.
- [33] Y.K. Liu and Y.B. Tao. Experimental and numerical investigation of longitudinal and annular finned latent heat thermal energy storage unit. Solar Energy, 243:410–420, 2022. doi: 10.1016/j.solener.2022.08.023.
- [34] Y. Zhang, G. Yuan, Y. Wang, P. Gao, C. Fan, and Z. Wang. Solidification of an annular finned tube ice storage unit. Applied Thermal Engineering, 212:118567, 2022. doi: 10.1016/j.applthermaleng.2022.118567.
- [35] A.K. Hassan, J. Abdulateef, M.S. Mahdi, and A.F. Hasan. Experimental evaluation of thermal performance of two different finned latent heat storage systems. Case Studies in Thermal Engineering, 21:100675, 2020. doi: 10.1016/j.csite.2020.100675.
- [36] L. Kalapala and J.K. Devanuri. Effect of orientation on thermal performance of a latent heat storage system equipped with annular fins – An experimental and numerical investigation. Applied Thermal Engineering, 183:116244, 2021. doi: 10.1016/j.applthermaleng.2020.116244.
- [37] X. Yang, J. Guo, B. Yang, H. Cheng, P. Wei, and Y.L. He. Design of non-uniformly distributed annular fins for a shell-and-tube thermal energy storage unit. Applied Energy, 279:115772, 2020. doi: 10.1016/j.apenergy.2020.115772.
- [38] Z. Elmaazouzi, I.A. Laasri, A. Gounni, M. El Alami, and E.G. Bennouna. Enhanced thermal performance of finned latent heat thermal energy storage system: fin parameters optimization. Journal of Energy Storage, 43:103116, 2021. doi: 10.1016/j.est.2021.103116.
- [39] S. Tiari, A. Hockins, and M. Mahdavi. Numerical study of a latent heat thermal energy storage system enhanced by varying fin configurations. Case Studies in Thermal Engineering, 25:100999, 2021. doi: 10.1016/j.csite.2021.100999.
- [40] M. Sanchouli, S. Payan, A. Payan, and S.A. Nada. Investigation of the enhancing thermal performance of phase change material in a double-tube heat exchanger using grid annular fins. Case Studies in Thermal Engineering, 34:101986, 2022. doi: 10.1016/j.csite.2022.101986.
- [41] Y. Zhu and Y. Qiu. Annular variable-spacing fin arrangement in latent heat storage system. Journal of Energy Storage, 50:104705, 2022. doi: 10.1016/j.est.2022.104705.
- [42] A.D. Brent, V.R. Voller, and K.J. Reid. Enthalpy-porosity technique for modeling convection diffusion phase change: Application to the melting of a pure metal. Numerical Heat Transfer, 13(3):297–318, 1988. doi: 10.1080/10407788808913615.
- [43] M. Longeon, A. Soupart, J.F. Fourmigué, A. Bruch, and P. Marty. Experimental and numerical study of annular PCM storage in the presence of natural convection. Applied Energy, 112:175–184, 2013. doi: 10.1016/j.apenergy.2013.06.007.
- [44] S.V. Patankar. Numerical Heat Transfer and Fluid Flow. CRC Press, 1980.
- [45] L. Pu, S. Zhang, L. Xu, and Y. Li. Thermal performance optimization and evaluation of a radial finned shell-and-tube latent heat thermal energy storage unit. Applied Thermal Engineering, 166:114753, 2020. doi: 10.1016/j.applthermaleng.2019.114753
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d148e507-8294-40ff-8bc8-bceb16d00e2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.