Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The city of Bni drar in the NE of Morocco experienced frequent and regular share of flood events, especially at its main road where it’s commonly submerged by floodwaters during these events. Because of its crucial significance and role in the transportation infrastructure of the region, this study aims to analyze and evaluate flood hazard in Bni Drar, with a specific focus on its impact on the national road N2 as it crosses the Sefrou wadi. Rainfall-runoff transformation was conducted using HEC-HMS model, resulting in flow hydrographs for 10, 20, 50, and 100 years return period. These hydrographs constituted an input for IBER hydrodynamic model, enabling the simulation of flood depth and velocity for a return period of 100 years. Flood hazard was categorized by taking into account both flood depth and velocity. The maximum water depth in the study area is 2.7 meters for 100 years return period. Regarding flow velocity, the maximum value is 2 meters per second. The acquired hazard maps possess the capability to bolster flood risk management within the research region by furnishing a geospatial decision support instrument to empower local authorities. This enables the prompt execution of preventive measures against flood risks and fortifies the resilience of the territory.
Słowa kluczowe
Wydawca
Rocznik
Tom
Strony
170--182
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
autor
- Laboratory of Modeling and Scientific Computation, National School of Applied Sciences of Oujda, Mohamed 1st University, 60000, Morocco
autor
- Laboratory of Modeling and Scientific Computation, National School of Applied Sciences of Oujda, Mohamed 1st University, 60000, Morocco
autor
- Laboratory of Applied Sciences, National School of Applied Sciences of Oujda, Mohamed 1st University, 60000, Morocco
autor
- Laboratory of Modeling and Scientific Computation, National School of Applied Sciences of Oujda, Mohamed 1st University, 60000, Morocco
Bibliografia
- 1. Grari A., Chourak M., Boushaba F., Cherif S., García Alonso E. 2019. Numerical characterization of torrential floods in the plain of Saïdia (North-East of Morocco). Arabian Journal of Geosciences. https://doi.org/10.1007/s12517-019-4288-1
- 2. Michielsen A., Kalantari Z., Lyon S.W., Liljegren E. 2016. Predicting and communicating flood risk of transport infrastructure based on watershed characteristics. Journal of Environmental Management. https://doi.org/10.1016/j.jenvman.2016.07.051
- 3. Bladé E., Cea L., Corestein G., Escolano E., Puertas J., Vázquez-Cendón E., Coll A. 2014. Iber: herramienta de simulación numérica del flujo en ríos. Revista internacional de métodos numéricos para cálculo y diseño en ingeniería, 30(1), 1–10. https://doi.org/10.1016/j.rimni.2012.07.004
- 4. Boushaba F., Grari A., Chourak M., Regad Y., Elkihel B. 2021. Numerical Simulation of the Flood Risk of the Deviation Hydraulic Structure at Saidia (North-East Morocco). In: Hajji, B., Mellit, A., Marco Tina, G., Rabhi, A., Launay, J., Naimi, S. (eds) Proceedings of the 2nd International Conference on Electronic Engineering and Renewable Energy Systems. ICEERE (2020). Lecture Notes in Electrical Engineering, vol 681. Springer, Singapore. https://doi.org/10.1007/978-981-15-6259-4_68
- 5. Carneiro J.F., Boughriba M., Correia A., Zarhloule Y., Rimi A., El Houadi B. 2010. Evaluation of climate change effects in a coastal aquifer in Morocco using a density-dependent numerical model. Environmental Earth Sciences, 61, 241–252. https://link.springer.com/article/10.1007/s12665-009-0339-3
- 6. Caro-Camargo C.A., Bayona-Romero J.A. 2018. Hydro-dynamic modeling for identification of flooding zones in the city of Tunja. Revista Facultad de Ingeniería Universidad de Antioquia, 88, 40-54. https://doi.org/10.17533/udea.redin.n88a05
- 7. Molinari D., De Bruijn K.M., Castillo-Rodríguez J.T., Aronica G.T., Bouwer L.M. 2019. Validation of flood risk models: Current practice and possible improvements. The International Journal of Disaster Risk Reduction. https://doi.org/10.1016/j.ijdrr.2018.10.022
- 8. Fernández-Nóvoa D., García-Feal O., González-Cao J., DeCastro M., Gómez-Gesteira M. 2022. Multiscale flood risk assessment under climate change: the case of the Miño Wadi in the city of Ourense, Spain. Natural Hazards and Earth System Sciences, 22, 3957–3972. https://doi.org/10.5194/nhess-2022-80
- 9. Apel H., Aronica G.T., Kreibich H., Thieken A.H. 2009. Flood risk analyses - how detailed do we need to be. Natural hazards. https://doi.org/10.1007/s11069-008-9277-8
- 10. He R., Zhang L., Tiong R.L. 2023. Flood risk assessment and mitigation for metro stations: an evidential-reasoning-based optimality approach considering uncertainty of subjective parameters. Reliability Engineering & System Safety, 109453. https://doi.org/10.1016/j.ress.2023.109453
- 11. Penny J., Alves P.B.R., De-Silva Y., Albert S. Chen, Slobodan Djordjević, Sangam Shrestha, Mukand Babel. (2023). Analysis of potential nature-based solutions for the Mun River Basin, Thailand. Water Science & Technology. https://doi.org/10.2166/wst.2023.050
- 12. Jibhakate S.M., Timbadiya P.V., Pate P.L. 2023. Multiparameter flood hazard, socioeconomic vulnerability and flood risk assessment for densely populated coastal city. Journal of environmental management, 344, 118405. https://doi.org/10.1016/j.jenvman.2023.118405
- 13. Kadiri M., Barkoaui A.E, Zarhloule Y., Grari A. 2023. Modelling surface runoff coupling the Iber and SWMM models for groundwater recharge: case study of Tamellat plain (Morocco). Arabian Journal of Geosciences, 16(6), 397. https://link.springer.com/article/10.1007/s12517-023-11492-0
- 14. Keiko Hori K., Saito T., Saito O., Hashimoto S., Taki K., Yoshid T., Fukamachi K., Ochiai C. 2023. Factors motivating residents of flood-prone areas to adopt nature-based solutions for flood-risk reduction. International Journal of Disaster Risk Reduction. https://doi.org/10.1016/j.ijdrr.2023.103962
- 15. Koutsoyiannis D. 2003. On the appropriateness of the Gumbel distribution for modeling extreme rainfall. ESF LESC Exploratory Workshop, Hydro Risk, Bologna, Italy. http://dx.doi.org/10.13140/RG.2.1.3811.6080
- 16. Kvočka D., Falconer R.A., Bray M. 2016. Flood hazard assessment for extreme flood events. Nat Hazards, 84, 1569–1599. https://doi.org/10.1007/s11069-016-2501-z
- 17. Liu J., Xiong J., Chen Y., Sun, Zhao X., Tu F., Gu Y. 2023. An integrated model chain for future flood risk prediction under land-use changes. Journal of Environmental Management. 342, 118125. https://doi.org/10.1016/j.jenvman.2023.118125
- 18. Sunmin L., Saro L., Moung-Jin L., Hyung-Sup J. 2018. Spatial Assessment of Urban Flood Susceptibility Using Data Mining and Geographic Information System (GIS) Tools. https://doi.org/10.3390/su10030648
- 19. Md Abdullah A.B., Muktarun I., Supria P. 2019. Flood hazard, vulnerability and risk assessment for different land use classes using a flow model. Earth Systems and Environment, 4, 225–244. https://doi.org/10.1007/s41748-019-00141-w
- 20. Mouzouri M., Irzi Z., Essaddek A. 2013. Utilisation d’image satellitaire et d’un modèle numérique d’altitude pour la cartographie des zones à risque d’inondation sur le littoral méditerranéen de Saïdia. Rev Française de Photogrammétrie et de Télédétection, 201, 49–63. https://doi.org/10.52638/rfpt.2013.45
- 21. Orlando G.-F., González-Cao J., Gómez-Gesteira M., Cea L., Domínguez J.M., Formella A. 2018. An Accelerated Tool for Flood Modelling Based on Iber Water, 10, 1459. https://doi.org/10.3390/w10101459
- 22. PPRi d’Annonay. Dossier d’approbation : Rapport de présentation. Available online : https://www.mairie-annonay.fr/IMG/pdf/plu_07_liste_ servitudes.pdf
- 23. Prado-Hernández J.V., Pascual-Ramírez F., CristóbalAcevedo D., Valentín-Paz O.G., Sánchez-Morales J.J.F. 2019. Application of HEC-HMS and IBER in the numeric modeling of floods in the Rio San Sebastian of the municipality of Totolapan, Morelos, Mexico. Wit Transactions on Ecology and the Environment, 239, 263–274. https://orcid.org/0000-0001-6045-1661
- 24. Sy H.M., Luu C., Bui Q.D., Ha H., Nguyen D.Q. 2023. Urban flood risk assessment using Sentinel-1 on the google earth engine: A case study in Thai Nguyen city, Vietnam. Remote Sensing Applications: Society and Environment, 31, 100987. https://doi.org/10.1016/j.rsase.2023.100987
- 25. Wang Y., Zhang C., Chen A.S., Wang G., Fu G. 2023. Exploring the relationship between urban flood risk and resilience at a high-resolution grid cell scale. Science of The Total Environment, 164852. https://doi.org/10.1016/j.scitotenv.2023.164852
- 26. Weday, M.A., Tabor, K.W., Gemeda, D.O. 2023. Flood hazards and risk mapping using geospatial technologies in Jimma City, southwestern Ethiopia. Heliyon, 9(4). https://doi.org/10.1016/j.heliyon.2023.e14617
- 27. Yu J., Zou L., Xia J., Chen X., Wang F., Zuo L. 2023. A multi-dimensional framework for improving flood risk assessment: Application in the Han Wadi Basin, China. Journal of Hydrology: Regional Studies, 47, 101434. https://doi.org/10.1016/j.ejrh.2023.101434
- 28. Zahaf T., Hichame S., Farid B., Chourak M. 2023. Mapping the risk of flooding of the national road N° 2 at the crossing of the wadi Tamdmadt north of the city of Bni Drar. Materials Today: Proceedings, 72, 3447– 3453. https://doi.org/10.1016/j.matpr.2022.08.089
- 29. Zahaf I., Chourak B. 2021. Risk of flooding of the national road N° 6 at the right of crossing the wadi Asla in the region of Taourirt. Materials Today: Proceedings, Elsevier. https://doi.org/10.1016/j.matpr.2021.03.484
- 30. Kalantari Z., Santos Ferreira C.S., Koutsouris A.J., Anna-Klara Ahlmer A.-K., Artemi Cerdà, Georgia Destouni. 2019. Assessing flood probability for transportation infrastructure based on catchment characteristics, sediment connectivity and remotely sensed soil moisture. Science of the Total Environment. https://doi.org/10.1016/j.scitotenv.2019.01.009
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1446916-8f77-4e3c-b46d-0c8cf585a757