PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Numerical study of conditions on the staircase during a fire in a public building

Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Fire is one of the most common risks to the environment and human health. Fire, depending on the conditions of combustion and the type of fuel, can emit many toxic products. The paper presents numerical analyzes of the conditions that can occur in a building during a fire. The conditions were analyzed in terms of the safety of the occupants and possible emissions of pollutants into the atmosphere. The temperature, propagation of smoke, and emission of pollutants were analyzed. A numerical model was created using Fire Dynamics Simulator (FDS) software. The model represents a staircase and a corridor in a real building located at the Silesian University of Technology in Poland. The results show that safe conditions are only ensured for a limited time, and emissions can also be harmful to occupants and the environment.
Słowa kluczowe
Rocznik
Strony
91--102
Opis fizyczny
Bibliogr. 19 poz.
Twórcy
  • Department of Heating, Ventilation and Dust Removal Technology, Faculty of Energy and Environmental Engineering, Silesian University of Technology, Konarskiego 20, 44-100 Gliwice, Poland
Bibliografia
  • [1] R. Jevtic, (Jan. 2015). Selection of the fire detectors and their arrangement in object, Bezbednost, Beograd, 57, 197-215. DOI: 10.5937/bezbednost1501197J.
  • [2] M. McNamee, G. Marlair, and B. Truchot, (Feb. 2020). Research Roadmap: Environmental Impact of Fires in the Built Environment, Accessed: Nov. 08, 2021. [Online]. Available: https://www.nfpa.org/News-and-Research/Data-research-and-tools/US-Fire-Problem/The-environmental-impact-of-fire
  • [3] A. Stec, (Jul. 2017). Fire toxicity - The elephant in the room?, Fire Safety Journal, 91, 79-90, Jul. 2017, DOI: 10.1016/j.firesaf.2017.05.003.
  • [4] D. Brzezińska, (2015). Wentylacja pożarowa obiektów budowlanych. (Fire ventilation of buildings) Wydawnictwo Politechniki Łódzkiej.
  • [5] M. Król and A. Król, (Nov. 2017). Multi-criteria numerical analysis of factors influencing the efficiency of natural smoke venting of atria, Journal of Wind Engineering and Industrial Aerodynamics, 170, 149-161, DOI: 10.1016/j.jweia.2017.08.012.
  • [6] NFPA - Reporter’s Guide: The consequences of fire. https://www.nfpa.org/News-and-Research/Publications-and-media/Press-Room/Reporters-Guide-to-Fire-and-NFPA/Consequences-of-fire (accessed Nov. 09, 2021).
  • [7] F. Reisen, M. Bhujel, and J. Leonard, (Oct. 2014). Particle and volatile organic emissions from the combustion of a range of building and furnishing materials using a cone calorimeter, Fire Safety Journal, 69, 76-88, DOI: 10.1016/j.firesaf.2014.08.008.
  • [8] P. Blomqvist, B. Persson, and M. Simonson, (Sep. 2007). Fire Emissions of Organics into the Atmosphere, Fire Technol, 43(3), 213-231, DOI: 10.1007/s10694-007-0011-y.
  • [9] P. Blomqvist, L. Rosell, and M. Simonson, (Jan. 2004). Emissions from Fires Part II: Simulated Room Fires, Fire Technology, 40(1), 59-73, DOI: 10.1023/B:FIRE.0000003316.63475.16.
  • [10] F. W. Mowrer, (2002). Enclosure Smoke Filling and Management with Mechanical Ventilation, 24.
  • [11] C. A. Short, G. E. Whittle, and M. Owarish, (Jan. 2006). Fire and smoke control in naturally ventilated buildings, Building Research & Information, 34(1), 23-54, DOI: 10.1080/09613210500356089.
  • [12] W. X. Shi, J. Ji, J. H. Sun, S. M. Lo, L. J. Li, and X. Y. Yuan, (Aug. 2014). Influence of fire power and window position on smoke movement mechanisms and temperature distribution in an emergency staircase, Energy and Buildings, 79, 132-142, DOI: 10.1016/j.enbuild.2014.02.083.
  • [13] G. Hadjisophocleous and Q. Jia, (Jun. 2009). Comparison of FDS Prediction of Smoke Movement in a 10-Storey Building with Experimental Data, Fire Technol, 45(2), 163-177, DOI: 10.1007/s10694-008- 0075-3.
  • [14] K. B. McGrattan and G. P. Forney, (2004). Fire dynamics simulator (version 4): user’s guide, National Institute of Standards and Technology, Gaithersburg, MD, NIST SP 1019, DOI: 10.6028/NIST.SP.1019.
  • [15] PN-B-02877-4:2001 Ochrona przeciwpożarowa budynków - Instalacje grawitacyjne do odprowadzania dymu i ciepła - Zasady projektowania (Buildings fire protection - Gravity installations for the extraction of smoke and heat - Design rules). Polski Komitet Normalizacyjny, Apr. 23, 2001.
  • [16] DIN 18232-2:2007-1 Rauch- und Wärmefreihaltung- Teil 2: Natürliche Rauchabzugsanlagen (NRA); Bemessung, Anforderungen und Einbau. Deutsches Institut für Normung, Nov. 2007.
  • [17] NFPA 204: Standard for Smoke and Heat Venting. https://www.nfpa.org/codes-and-standards/all-codes-and-standards/list-of-codes-and-standards/detail?code=204 (accessed Nov. 15, 2021).
  • [18] S. T. McKenna and T. R. Hull, (Dec. 2016). The fire toxicity of polyurethane foams, Fire Sci Rev, 5(1), 3. DOI: 10.1186/s40038-016-0012-3.
  • [19] Poland - Regulation of the Minister of Family, Labour and Social Policy of 12th June 2018 on the Maximum Admissible Concentrations and Intensities of Harmful to Health Agents in the Working Environment (Dz. U. No 1286).
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d141fe33-9a36-479f-85b3-81c087bdb38e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.