PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced biosolubilization of mid-low grade phosphate rock by formation of microbial consortium biofilm from activated sludge

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Mid-low grade phosphate rock (PR) is a potential source of free phosphate to facilitate crop growth, but a cost effective and environmentally responsible extraction process is required. In this study, the capacity of a microbial consortium from activated sludge to solubilize PR in a laboratory-scale column reactor was investigated. The microbial consortium proved capable of efficiently releasing soluble phosphate in the reactor effluent over the 90-day trial. The microbial consortium grew well in the column system as evidenced by reduced chemical oxygen demand (COD) in the reaction solution. Biofilm formation was identified as critical for biosolubilization of the mid-low grade PR. Imaging of the biofilm by scanning electron microscopy (SEM) revealed a dense network of microbial cells embedded in extracellular polymeric substances (EPS). The biofilm contained both oxic and anoxic zones. The pH decreased significantly in both the biofilm and the reaction solution during operation, indicating healthy growth of the microbial consortium with corresponding acid generation and subsequent enhancement of phosphate solubilization.
Rocznik
Strony
217--224
Opis fizyczny
Bibliogr. 30 poz., rys., tab.
Twórcy
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China 430073
autor
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China 430073
autor
  • Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
autor
  • Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
autor
  • Department of Chemical and Materials Engineering, University of Alberta, Edmonton, Alberta, Canada T6G 1H9
autor
  • Key Laboratory for Green Chemical Process of Ministry of Education, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan, Hubei, China 430073
Bibliografia
  • BANFIELD, J., BARKER, W., WELCH, S., AND TAUNTON, A., 1999. Biological impact on mineral dissolution: application of the lichen model to understanding mineral weathering in the rhizosphere. Proc. Natl. Acad. Sci. USA 96, 3404–3411.
  • BEHERA, B.C., SINGDEVSACHAN, S.K., MISHRA, R.R., DUTTA, S.K., THATOI, H.N., 2014. Diversity, mechanism and biotechnology of phosphate solubilising microorganism in mangrove–A review. Biocatal. Agr. Biotechnol. 3, 97–110.
  • BELMONT, M.A., METCALFE, C.D., 2003. Feasibility of using ornamental plants (Zantedeschia aethiopica) in subsurface flow treatment wetlands to remove nitrogen, chemical oxygen demand and nonylphenol ethoxylate surfactants—a laboratory-scale study. Ecol. Eng. 21, 233–247.
  • BISWAS, D.R., NARAYANASAMY, G., 2006. Rock phosphate enriched compost: an approach to improve low-grade Indian rock phosphate. Bioresour. Technol. 97, 2243–2251.
  • CHEN, W.T., MA, C.C., LEE, M.H., CHU, Y.C., TSAI, L.C., SHU, C.M., 2012. Silver recovery and chemical oxygen demand (COD) removal from waste fixer solutions. Appl. Energy 100, 187–192.
  • DE LA ROSA, C., YU, T., 2005. Three-dimensional mapping of oxygen distribution in wastewater biofilms using an automation system and microelectrodes. Environ. Sci. Technol. 39, 5196–5202.
  • DE LA ROSA, C., YU, T., 2006. Development of an automation system to evaluate the three-dimensional oxygen distribution in wastewater biofilms using microsensors. Sensors Actuat. B, 113, 47–54.
  • DELOLME, C., SPADINI, L., MURIS, M., CAUSSE, B., GAUDET, J., 2011. Comparison of the acid–base reactivity of free-living Pseudomonas putida cells and biofilm. Chem. Geol. 289, 48–54.
  • DELVASTO, P., BALLESTER, A., MUÑOZ, J.A., GONZÁLEZ, F., BLÁZQUEZ, M.L., IGUAL, J.M., VALVERDE, A., GARCÍA-BALBOA, C., 2009. Mobilization of phosphorus from iron ore by the bacterium Burkholderia caribensis FeGL03. Miner. Eng. 22, 1–9.
  • EATON, A.D., CLESCERI, L.S., RICE, E.W., GREENBERG, A.E. (ED.), 2005. Standard methods for the examination of water and wastewater. 21st Eds. Centennial Edition. American Public Health Association, Washington, DC.
  • HAMDALI, H., HAFIDI, M., VIROLLE, M.J., OUHDOUCH, Y., 2008. Rock phosphate solubilizing actinomycetes: screening for plant growth promoting activities. World J. Microbiol. Biotechnol. 24, 2565–2575.
  • HARIPRASAD, P., NIRANJANA, S.R., 2009. Isolation and characterization of phosphate solubilizing rhizobacteria to improve plant health of tomato. Plant Soil 316, 13–24.
  • LEWANDOWSKI, Z., BEYENAL, H., 2007. Fundamentals of Biofilm Research, CRC Press, USA.
  • LU, R., YU, T., 2002. Fabrication and evaluation of an oxygen microsensor applicable to environmental engineering and science. J. Environ. Eng. Sci. 1, 225–235.
  • MENDES, G., FREITAS, A., PEREIRA, O.L., SILVA, I., VASSILEV, N.B., COSTA, M.D., 2014. Mechanisms of phosphate solubilization by fungal isolates when exposed to different P sources. Ann. Microbiol. 64, 239–249.
  • MOHARANA, P.C., BISWAS, D.R., 2016. Assessment of maturity indices of rock phosphate enriched composts using variable crop residues. Bioresour. Technol. 222, 1–13.
  • OMOIKE, A., CHOROVER, J., 2006. Adsorption to goethite of extracellular polymeric substances from Bacillus subtilis. Geochim. Cosmochim. Acta 70, 827–838.
  • PIKOVSKAYA, R.I., 1948. Mobilization of phosphorus in soil in connection with vital activity of some microbial species. Microbiologia 17, 362–370.
  • RAJAN, S.S., WATKINSON, J.H., SINCLAIR, A.G., 1996. Phosphate rocks for direct application to soil. Adv. Agron. 57, 77–159.
  • RODRÍGUEZ, H., FRAGA, R., 1999. Phosphate solubilizing bacteria and their role in plant growth promotion. Biotechnol. Adv. 17, 319–359.
  • SACKO, O., YATTARA, I.I., LAHBIB, M., NEYRA, M., 2012. Effects of a rock phosphate on indigenous rhizobia associated with Sesbania sesban. J. Environ. Manage. 95, S265–S268.
  • TAN, S.Y., 2012. Multiple Microbial Processes in Membrane Aerated Biofilms Studied Using Microsensors. PhD Dissertation, University of Alberta, Edmonton, AB, Canada.
  • VACCARI, D.A., STRIGUL, N., 2011. Extrapolating phosphorus production to estimate resource reserves. Chemosphere 84, 792–797.
  • VASSILEVA, M., AZCON, R., BAREA, J.M., VASSILEV, N., 2000. Rock phosphate solubilization by free and encapsulated cells of Yarowia lipolytica. Process Biochem. 35, 693–697.
  • XIAO, C.Q., CHI, R.A., FANG, Y.J., 2013a. Effects of Acidiphilium cryptum on biosolubilization of rock phosphate in the presence of Acidithiobacillus ferrooxidans. Trans. Nonferrous Met. Soc. China 23, 2153–2159.
  • XIAO, C.Q., FANG, Y.J., CHI, R.A., 2015. Phosphate solubilization in vitro by isolated Aspergillus niger and Aspergillus carbonarius. Res. Chem. Intermed. 41, 2867–2878.
  • XIAO, C.Q., ZHANG, H.X., FANG, Y.J., CHI, R.A., 2013b. Evaluation for rock phosphate solubilization in fermentation and soil-plant system using a stress-tolerant phosphate-solubilizing Aspergillus niger WHAK1. Appl. Biochem. Biotechnol. 169, 123–133.
  • YU, T., 2000. Stratification of microbial processes and redox potential changes in biofilms. PhD Dissertation, University of Cincinnati, Cincinnati, OH, USA.
  • ZHOU, X.H., YU, T., SHI, H.C., SHI, H.M., 2011. Temporal and spatial inhibitory effects of zinc and copper on wastewater biofilms from oxygen concentration profiles determined by microelectrodes. Water Res. 45, 953–959.
  • ZHOU, X.H., ZHANG, M.K., YU, T., LIU, Y.C., SHI, H.C., 2013. Oxygen profiles in biofilms undergoing endogenous respiration. Chem. Eng. J. 220, 452–458.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2019).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d13fe7b7-c596-4f99-a0ee-4064e5018a2e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.