Tytuł artykułu
Treść / Zawartość
Pełne teksty:
Identyfikatory
Języki publikacji
Abstrakty
To improve the aging resistance and prolong the service life of asphalt pavement, this study utilized modified multi-walled carbon nanotubes (MWCNTs) functionalized with carboxyl (MWCNTs-COOH), hydroxyl (MWCNTs-OH), and amino (MWCNTs-NH2) groups. These nanotubes were incorporated into SBS-modified asphalt at a concentration of 1%. The study sought to examine the impact of MWCNTs and their functional groups on asphalt’s rheological and anti-aging characteristics, alongside exploring their modification mechanisms. The findings indicated that rheological tests showed that MWCNTs/SBS composite-modified asphalt, particularly MWCNTs-OH/SBS, exhibited remarkable resistance to high-temperature deformation, a crucial characteristic for asphalt performance in hot climates. Nevertheless, it is important to note that the addition of MWCNTs led to an increase in asphalt’s creep strength and creep rate, which could potentially reduce its resistance to low-temperature cracking. However, the covalent functionalization of MWCNTs mitigated these adverse effects on low-temperature performance. Moreover, the inclusion of MWCNTs in asphalt served as a barrier, impeding the penetration of oxygen molecules and ultraviolet radiation into the asphalt matrix. This proved to be an effective means of inhibiting the aging process, a critical factor in extending the service life of asphalt pavement. Among the different formulations of MWCNTs modified asphalt, the MWCNTs-OH/SBS composite-modified asphalt exhibited notably effective anti-aging properties. Both rheological and anti-aging evaluations demonstrated that hydroxyl functional groups played a pivotal role in enhancing performance, chiefly by fostering interactions with asphalt molecules.
Czasopismo
Rocznik
Tom
Strony
307--322
Opis fizyczny
Bibliogr. 29 poz., il., tab.
Twórcy
autor
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, Hunan, China
autor
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, Hunan,China
autor
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, Hunan, China
autor
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, Hunan, China
autor
- School of Traffic and Transportation Engineering, Changsha University of Science and Technology, Changsha, Hunan, China
Bibliografia
- [1] I.G.N. Camargo, T.B. Dhia, A. Loulizi, B. Hofko, and J. Mirwald, “Anti-aging additives: proposed evaluation process based on literature review”, Road Materials and Pavement Design, vol. 22, no. sup 1, pp. S134-S153, 2021, doi:10.1080/14680629.2021.1906738.
- [2] Z. He, T. Xie, Q. Li, and P. Wang, “Physical and Antiaging Properties of Rodlike Nano-ZnO-Modified Asphalt”, Journal of Materials in Civil Engineering, vol. 33, no. 11, art. no. 04021316, 2021, doi:10.1061/(ASCE)MT.1943-5533.0003947.
- [3] M. Pucułek, A. Liphardt, and P. Radziszewski, “Evaluation of the Possibility of Reduction of Highly Modified Binders Technological Temperatures”, Archives of Civil Engineering, vol. 67, no. 1, pp. 557-570, 2021, doi:10.24425/ace.2021.136489.
- [4] K. Wei, X. Cao, Y. Wu, Z. Cheng, B. Tang, and B. Shan, “Dynamic chemistry approach for self-healing of polymer-modified asphalt: A state-of-the-art review”, Construction and Building Materials, vol. 403, art. no. 133128, 2023, doi:10.1016/j.conbuildmat.2023.133128.
- [5] C. Rivera, S. Caro, E. Arámbula-Mercado, D. B. Sánchez, and P. Karki, “Comparative evaluation of ageing effects on the properties of regular and highly polymer modified asphalt binders”, Construction and Building Materials, vol. 302, art. no. 124163, 2021, doi:10.1016/j.conbuildmat.2021.124163.
- [6] J. Xu, L. Sun, J. Pei, B. Xue, T. Liu, and R. Li, “Microstructural, chemical and rheological evaluation on oxidative aging effect of SBS polymer modified asphalt”, Construction and Building Materials, vol. 267, art. no. 121028, 2021, doi:10.1016/j.conbuildmat.2020.121028.
- [7] J. Zhang, W. Huang, Y. Zhang, C. Yan, Q. Lv, and W. Guan, “Evaluation of the terminal blend crumb rubber/SBS composite modified asphalt”, Construction and Building Materials, vol. 278, art. no. 122377, 2021, doi:10.1016/j.conbuildmat.2021.122377.
- [8] Z. He, T. Xie, H. Yu, J. Ge, and W. Dai, “Evaluation of quantum dot composite graphene /Titanium oxide enhanced UV aging resistance modified asphalt”, Construction and Building Materials, vol. 408, art. no. 133732, 2023, doi:10.1016/j.conbuildmat.2023.133732.
- [9] N.S.S.M. Zali, et al., “Properties of stone mastic asphalt incorporating nano titanium as binder’s modifier”, Archives of Civil Engineering, vol. 68, no. 1, pp. 653-666, 2022, doi:10.24425/ace.2022.140192.
- [10] Y. Zare and K.Y. Rhee, “The effective conductivity of polymer carbon nanotubes (CNT) nanocomposites”, Journal of Physics and Chemistry of Solids, vol. 131, pp. 15-21, 2019, doi:10.1016/j.jpcs.2019.03.006.
- [11] F. Zhang, Y. Cao, A. Sha, W. Wang, R. Song, and B. Lou, “Mechanism, rheology and self-healing properties of carbon nanotube modified asphalt”, Construction and Building Materials, vol. 346, art.no. 128431, 2022, doi:10.1016/j.conbuildmat.2022.128431.
- [12] W. Sekkal and A. Zaoui, “High strength metakaolin-based geopolymer reinforced by pristine and covalent functionalized carbon nanotubes”, Construction and Building Materials, vol. 327, art. no. 126910, 2022, doi:10.1016/j.conbuildmat.2022.126910.
- [13] J.V.S. de Melo, G. Trichês, and L. T. de Rosso, “Experimental evaluation of the influence of reinforcement with Multi-Walled Carbon Nanotubes (MWCNTs) on the properties and fatigue life of hot mix asphalt”, Construction and Building Materials, vol. 162, pp. 369-382, 2018, doi:10.1016/j.conbuildmat.2017.12.033.
- [14] X. Sheng, T. Xu, and M. Wang, “Preparation, shape memory performance and microstructures of emulsified asphalt modified by multi-walled carbon nanotubes”, Construction and Building Materials, vol. 230, art. no. 116954, 2020, doi:10.1016/j.conbuildmat.2019.116954.
- [15] S. Dong, C. Zhu, Y. Chen, and J. Zhao, “Buckling behaviors of metal nanowires encapsulating carbon nanotubes by considering surface/interface effects from a refined beam model”, Carbon, vol. 141, pp. 348-362, 2019, doi:10.1016/j.carbon.2018.09.059.
- [16] S.W. Kim, et al., “Surface modifications for the effective dispersion of carbon nanotubes in solvents and polymers”, Carbon, vol. 50, no. 1, pp. 3-33, 2012, doi:10.1016/j.carbon.2011.08.011.
- [17] V. Vatanpour, M. Esmaeili, and M.H.D.A. Farahani, “Fouling reduction and retention increment of polyethersulfone nanofiltration membranes embedded by amine-functionalized multi-walled carbon nanotubes”, Journal of Membrane Science, vol. 466, pp. 70-81, 2014, doi:10.1016/j.memsci.2014.04.031.
- [18] S.-M. Xue, Z.-L. Xu, Y.-J. Tang, and C.-H. Ji, “Polypiperazine-amide Nanofiltration Membrane Modified by Different Functionalized Multiwalled Carbon Nanotubes (MWCNTs)”, ACS Applied Materials and Interfaces, vol. 8, no. 29, pp. 19135-19144, 2016, doi:10.1021/acsami.6b05545.
- [19] M. Saltan, S. Terzi, and S. Karahancer, “Performance analysis of nano modified bitumen and hot mix asphalt”, Construction and Building Materials, vol. 173, pp. 228-237, 2018, doi:10.1016/j.conbuildmat.2018.04.014.
- [20] P. Wang, Z. Dong, Y. Tan, and Z. Liu, “Anti-ageing properties of styrene-butadiene-styrene copolymer-modified asphalt combined with multi-walled carbon nanotubes”, Road Materials and Pavement Design, vol. 18, no. 3, pp. 533-549, 2017, doi:10.1080/14680629.2016.1181561.
- [21] Y. Xue, C. Liu, S. Lv, D. Ge, Z. Ju, and G. Fan, “Research on rheological properties of CNT-SBR modified asphalt”, Construction and Building Materials, vol. 361, art. no. 129587, 2022, doi:10.1016/j.conbuildmat.2022.129587.
- [22] M. Gong, J. Yang, H. Yao, M. Wang, X. Niu, and J. E. Haddock, “Investigating the performance, chemical, and microstructure properties of carbon nanotube-modified asphalt binder”, Road Materials and Pavement Design, vol. 19, no. 7, pp. 1499-1522, 2018, doi:10.1080/14680629.2017.1323661.
- [23] P.K. Gangineni, S. Yandrapu, S.K. Ghosh, A. Anand, R.K. Prusty, and B.C. Ray, “Mechanical behavior of Graphene decorated carbon fiber reinforced polymer composites: An assessment of the influence of functional groups”, Composites Part A: Applied Science and Manufacturing, vol. 122, pp. 36-44, 2019, doi:10.1016/j.compositesa.2019.04.017.
- [24] F. Nie, W. Jian, and D. Lau, “An atomistic study on the thermomechanical properties of graphene and functionalized graphene sheets modified asphalt”, Carbon, vol. 182, pp. 615-627, 2021, doi:10.1016/j.carbon.2021.06.055.
- [25] L. Jia, et al., “High performance epoxy-based composites for cryogenic use: A approach based on synergetic strengthening effects of epoxy grafted polyurethane and MWCNTs-NH2”, Composites Science and Technology, vol. 184, art. no. 107865, 2019, doi:10.1016/j.compscitech.2019.107865.
- [26] J. Han, et al., “A self-healable and highly flexible supercapacitor integrated by dynamically cross-linked electro-conductive hydrogels based on nanocellulose-templated carbon nanotubes embedded in a viscoelastic polymer network”, Carbon, vol. 149, pp. 1-18, 2019, doi:10.1016/j.carbon.2019.04.029.
- [27] “Standard method of test for estimating damage tolerance of asphalt binders using the linear amplitude sweep”. Washington DC, USA: AASHTO, 2014.
- [28] N.T. Dintcheva, R. Arrigo, F. Catalanotto, and E. Morici, “Improvement of the photo-stability of polystyrene-block-polybutadiene-block-polystyrene through carbon nanotubes”, Polymer Degradation and Stability, vol. 118, pp. 24-32, 2015, doi:10.1016/j.polymdegradstab.2015.04.011.
- [29] J. Yu, N. Grossiord, C.E. Koning, and J. Loos, “Controlling the dispersion of multi-wall carbon nanotubes in aqueous surfactant solution”, Carbon, vol. 45, no. 3, pp. 618-623, 2007, doi:10.1016/j.carbon.2006.10.010.
Identyfikator YADDA
bwmeta1.element.baztech-d13fc6f7-81c6-4e2e-bee4-cbb62bd047cf