Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study discusses the results of research on the multiple processing of thermoplastic starch-based polymer compositions. The research subject was two compositions from the envifill® M product line (Grupa Azoty, Poland): M30 and MB173, intended for injection applications. The materials underwent four processing cycles, each consisting of extrusion and injection operations. The research included determining the mass flow rate, mechanical parameters (tensile strength, bending strength, Young’s modulus, impact strength), thermomechanical parameters (storage modulus as a function of temperature), and thermal parameters (thermal resistance, phase transition temperature). The change in these parameters as a function of the processing rate was examined. It was shown that if one wants to reuse waste from the tested compositions, MB173 turns out to be a better material. Even though in the case of the M30 material, the changes obtained do not disqualify this material for re-use, a greater control of the degree of prior processing and the amount of waste used is recommended.
Rocznik
Tom
Strony
art. no. e152212
Opis fizyczny
Bibliogr. 18 poz., tab., wykr.
Twórcy
autor
- Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
- Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
- Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
- Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
- Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
autor
- Faculty of Materials Engineering, Kazimierz Wielki University, Chodkiewicza 30, 85-064 Bydgoszcz, Poland
Bibliografia
- [1] L. Avérous and P.J. Halley, “Biocomposites based on plasticized starch,” Biofuels Bioprod. Biorefining, vol. 3, no. 3, pp. 329–343, May 2009, doi: 10.1002/bbb.135.
- [2] Y. Zhang, C. Rempel, and Q. Liu, “Thermoplastic Starch Processing and Characteristics – A Review,” Crit. Rev. Food Sci. Nutr., vol. 54, no. 10, pp. 1353–1370, 2014, doi: 10.1080/10408398.2011.636156.
- [3] M. Zenkiewicz et al., “Effect of multiple injection moulding on some properties of polycarbonate,” Arch. Mater. Sci. Eng., vol. 37, no. 2, pp. 94–101, 2009.
- [4] E. Fortunati et al., “Investigation of thermo-mechanical, chemical and degradative properties of PLA-limonene films reinforced with cellulose nanocrystals extracted from Phormium tenax leaves,” Eur. Polym. J., vol. 56, no. 1, pp. 77–91, Jul. 2014, doi: 10.1016/j.eurpolymj.2014.03.030.
- [5] K. Moraczewski, R. Malinowski, D. Łączny, and M. Macko, “Surface modification of maize stem with polydopamine and tannic acid coatings,” Surf. Interfaces, vol. 26, p. 101319, Oct. 2021, doi: 10.1016/j.surfin.2021.101319.
- [6] M. Zenkiewicz, J. Richert, P. Rytlewski, K. Moraczewski, M. Stepczyńska, and T. Karasiewicz, “Characterisation of multi-extruded poly(lactic acid),” Polym. Test., vol. 28, no. 4, pp. 412–418, Jun. 2009, doi: 10.1016/j.polymertesting.2009.01.012.
- [7] K. Moraczewski, “Characterization of multi-injected poly(𝜀-caprolactone),” Polym. Test., vol. 33, pp. 116–120, 2014, doi: 10.1016/j.polymertesting.2013.11.010.
- [8] E. de M. Teixeira, D. Pasquini, A.A.S. Curvelo, E. Corradini, M.N. Belgacem, and A. Dufresne, “Cassava bagasse cellulose nanofibrils reinforced thermoplastic cassava starch,” Carbohydr. Polym., vol. 78, no. 3, pp. 422–431, Oct. 2009, doi: 10.1016/j.carbpol.2009.04.034.
- [9] A.K. Bledzki, A. Jaszkiewicz, and D. Scherzer, “Mechanical properties of PLA composites with man-made cellulose and abaca fibres,” Compos. Part A Appl. Sci. Manuf., vol. 40, no. 4, pp. 404–412, Apr. 2009, doi: 10.1016/j.compositesa.2009.01.002.
- [10] J.B. Olivato, M.V.E. Grossmann, F. Yamashita, D. Eiras, and L.A. Pessan, “Citric acid and maleic anhydride as compatibilizers in starch/poly(butylene adipate-co-terephthalate) blends by one-step reactive extrusion,” Carbohydr. Polym., vol. 87, no. 4, pp. 2614–2618, Mar. 2012, doi: 10.1016/j.carbpol.2011.11.035.
- [11] A. Hejna, J. Lenża, K. Formela, and J. Korol, “Studies on the Combined Impact of Starch Source and Multiple Processing on Selected Properties of Thermoplastic Starch/Ethylene-Vinyl Acetate Blends,” J. Polym. Environ., vol. 27, no. 5, pp. 1112–1126, May 2019, doi: 10.1007/s10924-019-01406-1.
- [12] F. Xie et al., “Characteristics of starch-based films plasticised by glycerol and by the ionic liquid 1-ethyl-3-methylimidazolium acetate: A comparative study,” Carbohydr. Polym., vol. 111, pp. 841–848, Oct. 2014, doi: 10.1016/j.carbpol.2014.05.058.
- [13] H. Liu, F. Xie, L. Yu, L. Chen, and L. Li, “Thermal processing of starch-based polymers,” Prog. Polym. Sci., vol. 34, no. 12, pp. 1348–1368, Dec. 2009, doi: 10.1016/j.progpolymsci.2009.07.001.
- [14] N.A. El-Wakil, E.A. Hassan, R.E. Abou-Zeid, and A. Dufresne, “Development of wheat gluten/nanocellulose/titanium dioxide nanocomposites for active food packaging,” Carbohydr. Polym., vol. 124, pp. 337–346, Jun. 2015, doi: 10.1016/j.carbpol.2015.01.076.
- [15] V. Sessini, M.P. Arrieta, J.M. Kenny, and L. Peponi, “Processing of edible films based on nanoreinforced gelatinized starch,” Polym. Degrad. Stab., vol. 132, pp. 157–168, Oct. 2016, doi: 10.1016/j.polymdegradstab.2016.02.026.
- [16] R. Yahia et al., “Synthesis and characterization of thermoplastic starch/PVA/cardanol oil composites loaded with in-situ silver nanoparticles,” J. Appl. Polym. Sci., vol. 139, no. 3, p. 51511, Jan. 2022, doi: 10.1002/app.51511.
- [17] M. Alexandre and P. Dubois, “Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials,” Mater. Sci. Eng. R Reports, vol. 28, no. 1–2, pp. 1–63, Jun. 2000, doi: 10.1016/S0927-796X(00)00012-7.
- [18] M.L. Sanyang, S.M. Sapuan, M. Jawaid, M.R. Ishak, and J. Sahari, “Effect of plasticizer type and concentration on physical properties of biodegradable films based on sugar palm (arenga pinnata) starch for food packaging,” J. Food Sci. Technol., vol. 53, no. 1, pp. 326–336, Jan. 2016, doi: 10.1007/s13197-015-2009-7.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d13f3f61-9db9-4bca-9549-e520a2096745
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.