PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enancjoselektywna enzymatyczna desymetryzacja katalizowana oksydoreduktazami. Reakcje redukcji. Część 2

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Enantioselective enzymatic desymmetrization catalyzed by oxidoreductases. Reduction reactions. Part 2
Języki publikacji
PL
Abstrakty
EN
Biotransformation reactions of many organic compounds under the influence of enzymes take place with the high selectivity, rarely achieved by other methods. Ketoesters represent an extensive group of selectively bioreduced compounds. Chiral hydroxyesters and, subsequently, hydroxyacids are valuable intermediates in the syntheses of various biologically active compounds. Acyclic α- and β-ketoesters are transformed to the corresponding (R)- and (S)-hydroxyesters by using a specific dehydrogenases. The whole-cells enzymes, e.g. baker’s yeast, may exhibit a different catalytic activity depending on the substrate structure. Baker’s yeast enzymes selectively reduce the cyclic β-ketoesters providing mainly anti diastereomers due to the lack of rotation around the single α,β carbon-carbon bond. The enzymatic reduction of the esters, cyclopentanone, and cyclohexanone derivatives gave the optically active anti-alcohol enantiomers. The reductive EED of prochiral α-ketoesters, as well as β-ketoesters is an interesting transformation in organic chemistry due to the importance of the resulting chiral α-hydroxy acids and their derivatives used as building blocks. Baker’s yeast-catalyzed reduction of alkyl esters derived from pyruvate and benzoylformate allows the preparation of the (R)-alcohols. Polyketones can also be subjected to the reductive EED to give different compounds bearing the quaternary stereogenic centers which are broadly applied in asymmetric synthesis. In asymmetric synthesis, similarly to carbon-oxygen double bonds, carbon-carbon double bonds of prochiral alkanes can be reduced to obtain the optically active saturated compounds. The reduction of alkenes is catalyzed by both, the whole cells (microorganisms, plant cells) as well as isolated enzymes belonging to the oxydoreductases, so-called ene-reductases. The whole-cell catalysts are suitable, most frequently, for the preparative scale syntheses, but they are less chemoselective in comparison to the isolated reductases. In the case of polyfunctionalized alkenes, microorganisms can cause the additional side reaction reducing the desired product yield.
Słowa kluczowe
Rocznik
Strony
1009--1030
Opis fizyczny
Bibliogr. 60 poz., schem.
Twórcy
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika, ul. Karłowicza 24, 85-092 Bydgoszcz
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika, ul. Karłowicza 24, 85-092 Bydgoszcz
  • Katedra Chemii Organicznej, Uniwersytet Mikołaja Kopernika, ul. Gagarina 7, 87-100 Toruń
  • Katedra i Zakład Chemii Organicznej, Collegium Medicum Uniwersytet Mikołaja Kopernika, ul. dr. A. Jurasza 2, 85-089 Bydgoszcz
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika, ul. Karłowicza 24, 85-092 Bydgoszcz
  • Katedra i Zakład Biochemii, Collegium Medicum Uniwersytet Mikołaja Kopernika, ul. Karłowicza 24, 85-092 Bydgoszcz
Bibliografia
  • [1] N. Kizaki, Y. Yasohara, J. Hasegawa, M. Wada, M. Kataoka, S. Shimizu, Appl. Microbiol. Biotechnol., 2001, 55, 590.
  • [2] R.N. Patel, C.G. McNamee, A. Banerjee, J.M. Howell, R.S. Robison, L. Szarka, J. Enzyme Microb. Technol., 1992, 14, 731.
  • [3] F. Aragozzini, M. Valenti, E. Santaniello, P. Ferraboschi, P. Grisenti, Biocatalysis, 1992, 5, 325.
  • [4] H. Yamamoto, N. Kimoto, A. Matsuyama, Y. Kabayashi, Biosci. Biotech. Biochem., 2002, 66, 1775.
  • [5] Y. Akakabe, M. Takahashi, M. Kamezawa, K. Kikuchi, H. Tachibana, T. Ohtani, Y. Naoshima, J. Chem. Soc., Perkin Trans. 1, 1995, 1295.
  • [6] M. Kataoka, K. Yamamoto, H. Kawabata, M. Wada, K. Kita, H. Yanase, S. Shimizu, Appl. Microbiol. Biotechnol., 1999, 51, 486.
  • [7] H. Yamamoto, A. Matsuyama, Y. Kabayashi, Biosci. Biotech. Biochem., 2002, 66, 481.
  • [8] T. Zelinski, M.-R. Kula, Bioorg. Med. Chem. Lett., 1994, 2, 421.
  • [9] N. Itoh, M. Matsuda, M. Mabuchi, T. Dairi, J. Wang, Eur. J. Biochem., 2002, 269, 2394.
  • [10] Y. Yasohara, N. Kizaki, J. Hasegawa, S. Takahashi, M. Wada, M. Kataoka, S. Shimizu, Appl. Microbiol. Biotechnol., 1999, 51, 847.
  • [11] M. Wada, M. Kataoka, H. Kawabata, Y. Yasohara, N. Kizaki, J. Hasegawa, S. Shimizu, Biosci. Biotech. Biochem., 1998, 62, 280.
  • [12] M. Wada, H. Kawabata, A. Yoshizumi, M. Kataoka, S. Nakamori, Y. Yasohara, N. Kizaki, J. Hasegawa, S.J. Shimizu, Biosci. Bioeng., 1999, 87, 144.
  • [13] C.E. Anson, M.J. Bibb, K.I. Booker-Milburn, C. Clissold, P.J. Haley, D.A. Hopwood, K. Ichinose, W.P. Revill, G.R. Stephenson, C.M. Surti, Angew. Chem., Int. Ed., 2000, 39, 224.
  • [14] T. Fujisawa, T. Itoh, T. Sato, Tetrahedron Lett., 1984, 25, 5083.
  • [15] D. Buisson, S. Henrot, M. Larcheveque, R. Azerad, Tetrahedron Lett., 1987, 28, 5033.
  • [16] B.D. Feske, I.A. Kaluzna, J.D. Stewart, J. Org. Chem., 2005, 70, 9654.
  • [17] K. Faber, Biotransformations in organic chemistry, Springer, Berlin, 1992.
  • [18] S.K. Padhi, I.A. Kaluzna, D. Buisson, R. Azerad, J.D. Stewart, Tetrahedron: Asymmetry, 2007, 18, 2133.
  • [19] M.M. Kayser, M.D. Mihovilovic, J. Kearns, A. Feicht, J.D. Stewart, J. Org. Chem., 1999, 64, 6603.
  • [20] R.N. Patel, L. Chu, R. Chidambaram, J. Zhu, J. Kant, Tetrahedron: Asymmetry, 2002, 13, 349.
  • [21] K. Ishihara, H. Yamaguchi, H. Hamada, N. Nakajiman, K. Nakamura, J. Mol. Catal. B: Enzymol., 2000, 10, 429.
  • [22] A. Shafiee, H. Motamedi, A. King, Appl. Microbiol. Biotechnol., 1998, 49, 709.
  • [23] M. Iwamoto, H. Kawada, T. Tanaka, M. Nakada, Tetrahedron Lett., 2003, 44, 7239.
  • [24] M. Wolberg, W. Hummel, M. Muller, Chem. Eur. J., 2001, 7, 4562.
  • [25] M. Wolberg, A. Ji, W. Hummel, M. Muller, Synthesis, 2001, 937.
  • [26] D. Enders, J.L. Vicario, A. Job, M. Wolberg, M. Muller, Chem. Eur. J., 2002, 8, 4272.
  • [27] J.L. Vicario, A. Job, M. Wolberg, M. Muller, D. Enders, Org. Lett., 2002, 4, 1023.
  • [28] A. Job, M. Wolberg, M. Muller, D. Enders, Synthesis, 2001, 1796.
  • [29] Z. Guo, Y. Chen, A. Goswami, R.L. Hanson, R.N. Patel, Tetrahedron: Asymmetry, 2006, 17, 1589.
  • [30] T. Fujisawa, E. Kojima, T. Sato, Chem. Lett., 1987, 2227.
  • [31] M. Takeshita, T. Sato, Chem. Pharm. Bull., 1989, 37, 1085.
  • [32] O. Bortolini, G. Fantin, M. Fogagnolo, P.P. Giovannini, A. Guerrini, A. Medici, J. Org. Chem., 1997, 62, 1854.
  • [33] E. Keinan, S.C. Sinha, A. Sinha-Bagchi, J. Org. Chem., 1992, 57, 3631.
  • [34] D.R. Dodds, J.B. Jones, J. Chem. Soc., Chem. Commun., 1982, 1080.
  • [35] D.R. Dodds, J.B. Jones, J. Am. Chem. Soc., 1988, 110, 577.
  • [36] K. Nakamura, R. Yamanaka, T. Matsudab, T. Haradab, Tetrahedron: Asymmetry, 2003, 14, 2659.
  • [37] K.-I. Fuhshuku, N. Funa, T. Akeboshi, H. Ohta, H. Hosomi, S. Ohba, T. Sugai, J. Org. Chem., 2000, 65, 129.
  • [38] K.-I. Fuhshuku, M. Tomita, T. Sugai, Adv. Synth. Catal., 2003, 345, 766.
  • [39] V. Gotor, J.R. Dehli, F. Rebolledo, J. Chem. Soc., Perkin Trans. 1, 2000, 307.
  • [40] J.R. Dehli, V. Gotor, Tetrahedron: Asymmetry, 2001, 12, 1485.
  • [41] J.R. Dehli, V. Gotor, Tetrahedron: Asymmetry, 2000, 11, 3693.
  • [42] C.V.C. Prasad, O.B. Wallace, J.W. Noonan, C.P. Sloan, W. Lau, S. Vig, M.F. Parker, D.W. Smith, S.B. Hansel, C.T. Polson, D.M. Barten, K.M. Felsenstein, S.B. Roberts, Bioorg. Med. Chem. Lett., 2004, 14, 3361.
  • [43] E. Garcia-Urdiales, I. Alfonso, V. Gotor, Chem. Rev., 2005, 105, 313.
  • [44] M. Hall, A.S. Bommarius, Chem. Rev., 2011, 111, 4088.
  • [45] P. Gramatica, P. Manitto, D. Monti, G. Speranza, Tetrahedron, 1987, 43, 4481.
  • [46] P. Gramatica, P. Manitto, D. Monti, G. Speranza, Tetrahedron, 1988, 44, 1299.
  • [47] C. Stueckler, N.J. Mueller, C.K. Winkler, S.M. Glueck, K. Gruber, G. Steinkellner, K. Faber, Dalton Trans., 2010, 39, 8472.
  • [48] C. Fuganti, S.J. Serra, Chem. Soc., Perkin Trans. 1, 2000, 3758.
  • [49] S. Serra, C. Fuganti, Tetrahedron: Asymmetry, 2001, 12, 2191.
  • [50] H.G. Leuenberger, W. Boguth, E. Widmer, R. Zell, Helv. Chim. Acta, 1976, 59, 1832.
  • [51] C. Stueckler, T.C. Reiter, N. Baudendistel, K. Faber, Tetrahedron, 2010, 66, 663.
  • [52] M. Hall, C. Stueckler, W. Kroutil, P. Macheroux, K. Faber, Angew. Chem. Int. Ed., 2007, 46, 3934.
  • [53] M. Hall, C. Stueckler, B. Hauer, R. Stuermer, T. Friedrich, M. Breuer, W. Kroutil, K. Faber, Eur. J. Org. Chem., 2008, 9, 1511.
  • [54] M. de Mancilha, R. de Conti, P.J.S. Moran, J.A.R. Rodrigues, Arkivoc, 2001, 85.
  • [55] B.R.S. de Paula, D.S. Zampieri, J.A.R. Rodrigues, P.J.S. Moran, Tetrahedron: Asymmetry, 2013, 24, 973.
  • [56] S. Laval, W. Dayoub, L. Pehlivan, E. Metay, D. Delbrayelle, G. Mignani, M. Lemaire, Tetrahedron Lett., 2014, 55, 23.
  • [57] M. Utaka, S. Konishi, A. Mizuoka, T. Ohkubo, T. Sakai, S. Tsuboi, A. Takeda, J. Org. Chem., 1989, 54, 4989.
  • [58] A. Muller, B. Hauer, B. Rosche, Biotechnol. Bioeng., 2007, 98, 22.
  • [59] C. Stueckler, M. Hall, H. Ehammer, E. Pointner, W. Kroutil, P. Macheroux, K. Faber, Org. Lett., 2007, 9, 5409.
  • [60] C. Stueckler, C.K. Winkler, M. Bonnekessel, K. Faber, Adv. Synth. Catal., 2010, 352, 2663.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d13ee9b6-e6f5-4666-b4c6-4c6cb9c51d4d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.