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ABSTRACT
Friction Stir Welding joint quality depends on input parameters such as tool rotational

speed, tool traverse speed, tool tilt angle and an axial force. Surface defects formation
occurs when these input parameters are not selected properly. The main objective 
of the recent paper is to develop Discrete Wavelet Transform algorithm by using 
Python programming and further subject it to the Friction Stir Welded samples for 
the identification of various external surface defects present.
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INTRODUCTION

Friction Stir Welding is a solid-state joining process that generally finds application
in the joining of alloys which are difficult to weld by a conventional welding process.
The important input parameters which govern the quality of weld obtained from 
the Friction Stir Welding process are tool rotational speed (rpm), tool traverse speed
(mm/min), axial force (KN), and tool tilt angle. Improper selection of these input
parameters during the Friction Stir Welding process results in the formation of
intermetallic compounds which are responsible for the initiation of crack nucleation
and also there is the formation of various external and internal defects such as surface
grooves, tunnel formation, flash formation and void formation which are responsible
for stress concentration [1-4]. 

Nowadays, Machine Learning is being radically used in various materials and
manufacturing sectors for the optimization of mechanical and microstructure properties
like Ultimate Tensile Strength, Fracture Strength, Elongation percentage, Grain size,
etc. Unsupervised machine learning classifiers were used by Kolokas et al. [5] for fault
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prognosis and forecasting in industrial equipment related to plastic and aluminium
production. The results concluded that the used machine learning models were capable
of predicting the faults before their occurrence. Aimiyeakagbon et al. [6 ] used machine
learning time series forecasting approach for prediction of crack length in the riveted
aluminium plates. Mongan et al. [7] combined genetic algorithm (GA) with Artificial
Neural Network (ANN) for predicting the strength of ultrasonically welded joints. 
The model resulted high accuracy with 0.9827 as a correlation coefficient. Likely these
applications machine learning is also being used in Friction Stir Welding process. Dutt
et al. [8 ] developed artificial neural network model for studying about the correlation
between the Friction Stir Welding input parameters such as a rotation rate and traverse
rate with the mechanical property of friction stir welded precipitation strengthened
AA7050 aluminum alloys. Hartl et al. [9] used Bayesian optimization and reinforcement
learning method to improve the surface quality of friction stir welded joints. The present
research focuses on the implementation of Discrete Wavelet Transformation for 
the detection of surface defects present on Friction Stir Welded joints. Selim et al. [10]
applied a wavelet transformation algorithm for the detection of internal defects in 
a given aluminum component. Figure 1 shows the wavelet contour map of the three
scan points on the metallic component.

Fig. 1. Contour maps of wavelet transform at 
a) Scan point 1, b) Scan point 2, c) Scan Point 3 [10].



Vermaak et al. [11] used the Dual-Tree Complex Wavelet Transform algorithm for
improving fabric defect detection. Guminiak et al. [12] applied a discrete wavelet
transform in the truss structures with rigidly connected bars for detecting the defects.

MATERIAL AND METHODS

In the present work, Aluminium alloy 6060 T5 plates were joined. The chemical
composition of the base alloy plate is shown in Table 1. The base alloy plate of 
the dimensions 150 mm X 100 mm X 6 mm was mounted tightly on the CNC bed with
the help of a fixture. The main purpose of the fixture is to help both workpieces in 
a proper grip so that they do not dislocate from their original position while carrying
out the Friction Stir Welding Process. The tool material for joining the plates is H13. 

Table 1. Chemical Composition of 6060-T5 Al alloy in wt %.

Five Friction Stir Welded samples were prepared at particular input parameters
shown in Table 2. The digital images captured of the welded samples are shown in
Figure 2-6.

Table 2. Parameters selected for Friction Stir Welding process.

Fig. 2. Digital Cropped image of Sample 1.



Fig. 3. Digital cropped image of Sample 2.

Fig. 4. Digital cropped image of Sample 3.



Fig. 5. Digital cropped image of Sample 4.

Fig. 6. Digital Cropped image of Sample 5.

These digitally captured cropped images were imported to Google Colaboratory
platform for the implementation of Discrete Wavelet Transform algorithm developed
by using Python programming language. 



RESULTS AND DISCUSSION

The digital captured cropped image can be considered as a two-dimensional signal
s(n) where n is the samples of a given signal and n = 0,1,2,….. M-1. Discrete time signal
is obtained by summing up scaling function term represented by Equation 1 and wavelet
function term represented by Equation 2. 

(1)

(2)

In Equation 1, WØ is a scaling function, j0 is a scaling parameter and is
a normalizing term used for converting a spacial domain s(n) to WØ(j0, k). In Equation
2 it should be noted that j ≥ j0. Equation 1 and 2 constitutes Forward discrete wavelet
transformation while Equation 3 represents an expression for an inverse discrete wavelet
transformation. 

(3)

Fig. 7. Friction Stir Welded image subjected to 
Discrete Wavelet Transform algorithm.

It is a common fact that filters are one-dimensional in nature while images are 
two-dimensional in nature. So, in order to apply one-dimensional filter to the two-
dimensional images, we have to apply one-dimensional filter along rows of images and
then along column of images as shown in Figure 7. High pass filter extract the edges
and low pass filter does the approximation. ILH extracts the information from the input
image and has passed through the high pass filter which acts on the row of an input
image and finally results horizontal edges. ILL has passed through two low pass filters
and results an approximation image. IHL results vertical edges while IHH extracts 
the vertical feature of the image and has passed through high pass filter along the column
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of the image. The high pass filter operating along the row of the input image, so, IHH
emphasizes the edges along the diagonal of the image. The results obtained as depicted
in Figure 8-12. 

Fig. 8. Result for Sample 1.

Fig. 9. Result for Sample 2.

Fig. 10. Result for Sample 3.

Fig. 11. Result for Sample 4.



Fig. 12. Result for Sample 5.

It is observed from the results that inhomogeneous pixel present in the obtained
transforms depicts external surface defects like flash formation and groovy edges. 

CONCLUSION

The present study implemented the Discrete Wavelet Transform algorithm to 
the five friction stir welded samples for detecting the presence of surface defects such
as flash formation, groovy edges etc. as a main objective. The results showed that 
the Discrete Wavelet Transform is able to capture and extract the minute details present
on the surface of the weld and further can be used for defects detection purpose. 
The future study which be further carried out on this work is to implement it on real-
time monitoring of defects formation.
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