PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Application of numerical modelling to scaling-up of electrically induced extraction from an organic mixture using an ionic liquid

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Liquid-liquid extraction provides an environmentally friendly process as an alternative to azeotropic distillation, pervaporation and reverse osmosis because these techniques require the use of large amounts of energy, may involve volatile organic compounds, and operation at high pressureIonic liquids (ILs) continue to gain wide recognition as potential environmentally friendly solvents due to their unique properties. However due to their current high cost, their use in industry is seriously limited without an efficient methodology for recovery and recycle. In this paper we describe an innovative methodology for a liquid-liquid extraction process based on an electrically induced emulsion of an ionic liquid as the extracting solvent dispersed in an organic mixture. This offers a most efficient exploitation of the solvent. On the other hand we present our own design of a pilot (semi-industrial) scale extractor based on this methodology and which demonstrates effective recovery of the ionic liquid. In order to achieve this goal we used a numerical modelling tool implemented using our own simulation software based on the finite element method. We also used our original previous experience with generating and investigating liquid-liquid electrosprays using phase Doppler anemometry. Finally we present recommendations for contactor geometry and for the preferred operating conditions for the extractor.
Rocznik
Strony
133--148
Opis fizyczny
Bibliogr. 14 poz., il.
Twórcy
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Wólczańska 213, 90-924 Łódź, Poland
  • Department of Chemical and Petroleum Engineering, University of Kansas, Lawrence KS66045, USA
autor
  • Lodz University of Technology, Faculty of Process and Environmental Engineering, Wólczańska 213, 90-924 Łódź, Poland
Bibliografia
  • 1. Beigi A.A.M., Abdouss M., Yousefi M., Pourmortazavi S.M., Vahid A., 2013. Investigation on physical and electrochemical properties of three imidazolium based ionic liquids (1-hexyl-3-methylimidazolium tetrafluoroborate, 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl) imide and 1-butyl-3- methylimidazolium methylsulfate). J. Mol. Liq., 177, 361-368. DOI: 10.1016/j.molliq.2012.10.025.
  • 2. Garcia S., Larriba M., Garcia J., Torrecilla J. S., Rodriguez F., 2012. Liquid–liquid extraction of toluene from nheptane using binary mixtures of N-butylpyridinium tetrafluoroborate and N-butylpyridinium bis(trifluoromethylsulfonyl)imide ionic liquids. Chem. Eng. J., 180, 210– 215. DOI:10.1016/j.cej.2011.11.069.
  • 3. Kamiński K., Krawczyk M., Augustyniak J., Weatherley L.R., Petera J, 2014. Electrically induced liquid–liquid extraction from organic mixtures with the use of ionic liquids. Chem. Eng. J. 235, 109–123. DOI: 10.1016/j.cej.2013.09.019.
  • 4. Larriba M., Navarro P., Garcia J., Rodriguez F., 2014. Liquid−liquid extraction of toluene from n-alkanes using {[4empy][Tf2N] + [emim][DCA]} ionic liquid mixtures. J. Chem. Eng. Data, 2014, 59, 1692−1699. DOI: 10.1021/je5001439.
  • 5. Li Zaijun, Sun Xiulan, Liu Junkang, 2011. Ionic liquid as novel solvent for extraction and separation in analytical chemistry, In: Kokorin A. (Ed.), Ionic Liquids: Applications and Perspectives. InTech, 153-180. DOI: 10.5772/14250.
  • 6. Pereiro A. B., Rodriguez A., 2008. Azeotrope-breaking using [BMIM][MeSO4] ionic liquid in an extraction column. Sep. Purif. Technol., 62, 733–738. DOI: 10.1016/j.seppur.2008.03.015.
  • 7. Pereiro A.B., Tojo E., Rodriguez A., Canosa J., Tojo J., 2006. HMImPF6 ionic liquid that separates the azeotropic mixture ethanol + heptane. Green Chem., 8, 307–310. DOI: 10.1039/B513079D.
  • 8. Pereiro A.B., Verdia P., Tojo E., Rodriguez A., 2007. Physical properties of 1-butyl-3-methylimidazolium methyl sulfate as a function of temperature. J. Chem. Eng. Data, 52, 377–380. DOI: 10.1021/je060313v.
  • 9. Petera J., Weatherley L.R., Rooney D., Kaminski K., 2009. A finite element model of enzymatically catalyzed hydrolysis in an electrostatic spray reactor. Comp. Chem. Eng., 33, 144–161. DOI: 10.1016/j.compchemeng.2008.07.006.
  • 10. Rodriguez-Cabo B., Arce A., Soto A., 2013. Desulfurization of fuels by liquid–liquid extraction with1-ethyl-3-methylimidazolium ionic liquids. Fluid Phase Equilib., 356, 126-135. DOI: 10.1016/j.fluid.2013.07.028.
  • 11. Schenk O., Gartner K., 2002. Two-level dynamic scheduling in PARDISO: Improved scalability on shared memory multiprocessing systems. Parallel Comput., 28, 187-197. DOI: 10.1016/S0167-8191(01)00135-1.
  • 12. Schenk O., Gartner K., 2004. Solving unsymmetric sparse systems of linear equations with PARDISO. Future Gener. Comput. Syst., 20, 475–487. DOI: 10.1016/j.future.2003.07.011.
  • 13. Xuesheng Hu, Yingxia Li, Dannan Cui, and Biaohua Chen, 2008. Separation of ethyl acetate and ethanol by room temperature ionic liquids with the tetrafluoroborate anion. J. Chem. Eng. Data, 53, 427–433. DOI: 10.1021/je700516t.
  • 14. Zeberg-Mikkelsen C.K., Watson G., Baylaucq A., Galliéro G., Boned C., 2006. Comparative experimental and modeling studies of the viscosity behavior of ethanol + C7 hydrocarbon mixtures versus pressure and temperature. Fluid Phase Equilib., 245, 6–19. DOI: 10.1016/j.fluid.2006.01.030.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d12f2517-9000-4374-983b-f7b2043df59b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.