PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Aerosol Optical Depth variations due to local breeze circulation in Kongsfjorden, Spitsbergen

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
This paper presents the results of Aerosol Optical Depth (AOD) studies which took place in Ny-Ålesund in the spring of 2014 during the iAREA campaign. The measurements were taken using Microtops II hand-held sunphotometers along the Kongsfjorden, on a path leading from the research village to the fjord opening. Local breeze circulation was observed during the measurement campaign which resulted in an evident increase of AOD along the measurement profile towards the open sea. Using the observed AOD, changes over the open sea have been calculated and the location of the breeze front has been determined.
Czasopismo
Rocznik
Strony
422--430
Opis fizyczny
Bibliogr. 36 poz., mapy, rys., tab., wykr.
Twórcy
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
autor
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
  • Institute of Oceanology, Polish Academy of Sciences, Sopot, Poland
Bibliografia
  • [1] Argentini, S., Viola, A. P., Mastrantonio, G., Maurizi, A., Georgiadis, T., Nardino, M., 2003. Characteristics of the boundary layer at Ny-Ålesund in the Arctic during the ARTIST field experiment. Ann. Geofis. 46 (2), 185-196.
  • [2] Beine, H. J., Argentini, S., Maurizi, A., Mastrantonio, G., Viola, A., 2001. The local wind field at Ny-Ålesund and the Zeppelin mountain at Svalbard. Meteorol. Atmos. Phys. 78 (1-2), 107-113.
  • [3] Carlund, T., Hakansson, B., Land, P., 2005. Aerosol optical depth over the Baltic Sea derived from AERONET and SeaWiFS measurement. Int. J. Remote Sens. 26 (2), 233-245.
  • [4] Christensen, J. H., 1997. The Danish Eulerian hemispheric model — a three-dimensional air pollution model used for the Arctic. Atmos. Environ. 31 (24), 4169-4191, http://dx.doi.org/10.1016/S1352-2310(97)00264-1.
  • [5] Eck, T. F., Holben, B. N., Reid, J. S., Dubovik, O., Smirnov, A., O'Neill, N. T., Slutsker, I., Kinne, S., 1999. Wavelength dependence of the optical depth of biomass burning, urban, and desert dust aerosols. J. Geophys. Res. 104, http://dx.doi.org/10.1029/1999JD900923.
  • [6] Engvall, A.-C., Krejci, R., Ström, J., Treffeisen, R., Scheele, R., Hermansenand, O., Paatero, J., 2008. Changes in aerosol properties during spring-summer period in the Arctic troposphere. Atmos. Chem. Phys. 8 (3), 445-462.
  • [7] Esau, I., Repina, I., 2012. Wind climate in Kongsfjorden, Svalbard, and attribution of leading wind driving mechanisms through turbulence-resolving simulations. Adv. Meteorol. 568454, 16 pp, http://dx.doi.org/10.1155/2012/568454.
  • [8] Førland, E. J., Hansen-Bauer, I., Nordli, P. Ø., 1997. Climate Statistics and Long-term Series of Temperature and Precipitation at Svalbard and Jan Mayen. Den Norske Meteorologiske Institutt (DNMI) Rep. 21/97 KLIMA, Oslo, Norway.
  • [9] Generoso, S., Bréon, F.-M., Chevallier, F., Balkanski, Y., Schulz, M., Bey, I., 2007. Assimilation of POLDER aerosol optical thickness into the LMDz-INCA model: implications for the Arctic aerosol burden. J. Geophys. Res. 112 (D2), 2156-2202, http://dx.doi.org/10.1029/2005JD006954.
  • [10] Gjelten, H. M., Nordli, O., Isaksen, K., Førland, E. J., Sviashchennikov, P. N., Wyszynski, P., Prokhorova, U. V., Przybylak, R., Ivanov, B. V., Urazgildeeva, A., 2016. Air temperature variations and gradients along the coast and fjords of western Spitsbergen. Pol. Polar Res. 38 (1), 41-60.
  • [11] Hanssen-Bauer, I., Solas, M. K., Stefensen, E. L., 1990. The Climate of Spitsbergen. Den Norske Meteorologiske Institutt (DMNI) Rep. 39/90 KLIMA, Oslo, Norway.
  • [12] Hartmann, J., Albers, F., Argentini, S., Bochert, A., Bonafe, U., Cohrs, W., Conidi, A., Freese, D., Georgiadis, T., Ippoliti, A., Kaleschke, L., Lüpkes, C., Maixner, U., Mastrantonio, G., Ravegnani, F., Reuter, A., Trivellone, G., Viola, A., 1999. Arctic radiation and turbulence interaction study (ARTIST). Report on Polar Research 305/1999. Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, 81 pp.
  • [13] Herber, A., Thomason, L. W., Gernandt, H., Leiterer, U., Nagel, D., Schulz, K. H., Kaptur, J., Albrecht, T., Notholt, J., 2002. Continuous day and night aerosol optical depth observations in the Arctic between 1991 and 1999. J. Geophys. Res. 107 (D10), 4097, http://dx.doi.org/10.1029/2001JD000536.
  • [14] Hirdman, D., Burkhart, J. F., Sodemann, H., Eckhardt, S., Jefferson, A., Quinn, P. K., Sharma, S., Strom, J., Stohl, A., 2010. Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions. Atmos. Chem. Phys. 10 (19), 9351-9368, http://dx.doi.org/10.5194/acp-10-9351-2010.
  • [15] Law, K. S., Stohl, A., 2007. Long-term trends of black carbon and sulphate aerosol in the Arctic: changes in atmospheric transport and source region emissions. Science 315 (5818), 1537-1540, http://dx.doi.org/10.1126/science.1137695.
  • [16] Markowicz, K. M., Zielinski, T., Blindheim, S., Gausa, M., Jagodnicka, A. K., Kardas, A. E., Kumala, W., Malinowski, S., Posyniak, M., Petelski, T., Stacewicz, T., 2012. Study of vertical structure of aerosol optical properties by sun photometers and ceilometer during macron campaign in 2007. Acta Geophys. 60 (5), 1308-1337, http://dx.doi.org/10.2478/s11600-011-0056-7.
  • [17] Maturilli, M., Herber, A., Konig-Langlo, G., 2013. Climatology and time series of surface meteorology in Ny-Ålesund, Svalbard. Earth Syst. Sci. Data 5 (1), 155-163, http://dx.doi.org/10.5194/essd-5-155-2013.
  • [18] Maturilli, M., Herber, A., König-Langlo, G., 2015. Surface radiation climatology for Ny-Ålesund, Svalbard (78.98N), basic observations for trend detection. Theor. Appl. Climatol. 120 (1), 331-339, http://dx.doi.org/10.1007/s00704-014-1173-4.
  • [19] Mazzola, M., Stone, R. S., Herber, A., Tomasi, C., Lupi, A., Vitale, V., Lanconelli, C., Toledano, C., Cachorro, V. E., O'Neill, N. T., Shiobara, M., Aaltonen, V., Stebel, K., Zielinski, T., Petelski, T., Ortiz de Galisteo, J. P., Torres, B., Berjon, A., Goloub, P., Li, Z., Blarel, L., Abboudm, I., Cuevas, E., Stock, M., Schulz, K.-H., Virkkula, A., 2012. Evaluation of sun photometer capabilities for retrievals of aerosol optical depth at high latitudes: the POLAR-AOD intercomparison campaigns. Atmos. Environ. 52, 4-17.
  • [20] Morys, M., Mims III, F. M., Hagerup, S., Anderson, S. E., Baker, A., Kia, J., Walkup, T., 2001. Design, calibration, and performance of MICROTOPS II handheld ozone monitor and Sun photometer. J. Geophys. Res.-Atmos. 106 (D13), 2156-2202.
  • [21] Nicholls, N., Gruza, G. V., Jouzel, J., Karl, T. R., Ogallo, L. A., Parker, D. E., 1996. Observed climate variability and change. In: Houghton, J. T., Filho, L. G. M., Callander, B. A., Harris, N., Kattenberg, A., Maskell, K. (Eds.), Climate Change 1995: The Science of Climate Change. Cambridge Univ. Press, Cambridge, UK, 133-192.
  • [22] Quinn, P. K., Shaw, G., Andrews, E., Dutton, E. G., Ruoho-Airola, T., Gong, S. L., 2007. Arctic haze: current trends and knowledge gaps. Tellus B 59 (1), 99-114.
  • [23] Rozwadowska, A., Zielinski, T., Petelski, T., Sobolewski, P., 2010. Cluster analysis of the impact of air back-trajectories on aerosol optical properties at Hornsund, Spitsbergen. Atmos. Chem. Phys. 10 (3), 877-893, http://dx.doi.org/10.5194/acp-10-877-2010.
  • [24] Smirnov, A., Royer, A., O'Neill, N., Tarussov, A., 1994. A study of the link between synoptic air mass type and atmospheric optical parameters. J. Geophys. Res. 99 (D10), 20967-20982.
  • [25] Smirnov, A., Holben, B. N., Slutsker, I., Giles, D. M., McClain, C. R., Eck, T. F., Sakerin, S. M., Macke, A., Croot, P., Zibordi, G., Quinn, P. K., Sciare, J., Kinne, S., Harvey, M., Smyth, T. J., Piketh, S., Zielinski, T., Proshutinsky, A., Goes, J. I., Nelson, N. B., Larouche, P., Radionov, V. F., Goloub, P., Krishna Moorthy, K., Matarrese, R., Robertson, E. J., Jourdin, F., 2009. Maritime aerosol network as a component of aerosol robotic network. J. Geophys. Res. 114, 1-10, http://dx.doi.org/10.1029/2008JD011257.
  • [26] Stohl, A., 2006. Characteristics of atmospheric transport into the Arctic troposphere. J. Geophys. Res.-Atmos. 111 (D11), D11306, http://dx.doi.org/10.1029/2005jd006888, 17 pp.
  • [27] Stone, R. S., Sharma, S., Herber, A., Eleftheriadis, K., Nelson, D. W., 2014. A characterization of Arctic aerosols on the basis of aerosol optical depth and black carbon measurements. Elem. Sci. Anth. 2, 27, http://dx.doi.org/10.12952/journal.elementa.000027.
  • [28] Strzalkowska, A., Makuch, P., Zawadzka, O., Pakszys, P., 2014. A modern approach to aerosol studies over the Baltic Sea. In: Zielinski, T., Pazdro, K., Dragan-Górska, A., Weydmann, A. (Eds.), Insights on Environmental Changes. Springer, Dordrecht, 49-64.
  • [29] Tomasi, C., Kokhanovsky, A., Lupi, A., Ritter, C., Smirnov, A., O'Neill, N., Stone, R., Holben, B., Nyeki, S., Wehrli, C., Stohl, A., Mazzola, M., Lanconelli, Ch., Vitale, V., Stebel, K., Aaltonen, V., de Leeuw, G., Rodriguez, E., Herber, A. B., Radionov, V. F., Zielinski, T., Petelski, T., Sakerin, S. M., Kabanov, D. M., Xue, Y., Mei, L., Istomina, L., Wagener, R., McArthur, B., Sobolewski, P. S., Kivi, R., Courcoux, Y., Larouche, P., Broccardoz, S., Piketh, S. J., 2015. Aerosol remote sensing in polar regions. Earth-Sci. Rev. 140, 108-157.
  • [30] Tomasi, C., Vitale, V., Lupi, A., Di Carmine, C., Campanelli, M., Herber, A., Treffeisen, R., Stone, R. S., Andrews, E., Sharma, S., Radionov, V., von Hoyningen-Huene, W., Stebel, K., Hansen, G. H., Myhre, C. L., Wehrli, C., Aaltonen, V., Lihavainen, H., Virkkula, A., Hillamo, R., Stroem, J., Toledano, C., Cachorro, V. E., Ortiz, P., de Frutos, A. M., Blindheim, S., Frioud, M., Gausa, M., Zielinski, T., Petelski, T., Yamanouchi, T., 2007. Aerosols in polar regions: a historical overview based on optical depth and in situ observations. J. Geophys. Res. 112 (D16), D16205, http://dx.doi.org/10.1029/2007JD008432, 28 pp.
  • [31] Treffeisen, R., Herber, A., Ström, J., Shiobara, M., Yamanouchi, T., Yamagata, S., Holmén, K., Kriew, M., Schrems, O., 2011. Interpretation of Arctic aerosol properties using cluster analysis applied to observations in the Svalbard area. Tellus B 56 (5), 457-476, http://dx.doi.org/10.3402/tellusb.v56i5.16469.
  • [32] Weller, M., Leiterer, V., 1988. Experimental data on spectral aerosol optical thickness and its global distribution. Beitr. Phys. Atmos. 61 (1), 1-9.
  • [33] Witek, M. L., Flatau, P., Quinn, P., Westphal, D., 2007. Global sea-salt modeling: results and validation against multicampaign shipboard measurements. J. Geophys. Res. 112 (D8), D08215, http://dx.doi.org/10.1029/2006JD007779, 14 pp.
  • [34] Zawadzka, O., Makuch, P., Markowicz, K. M., Zielinski, T., Petelski, T., Ulevicius, V., Strzalkowska, A., Rozwadowska, A., Gutowska, D., 2014. Studies of aerosol optical depth with use of Microtops sun photometers and MODIS detectors in the coastal areas of the Baltic Sea. Acta Geophys. 62 (2), 400-422, http://dx.doi.org/10.2478/s11600-013-0182-5.
  • [35] Zielinski, T., Petelski, T., Makuch, P., Strzalkowska, A., Ponczkowska, A., Markowicz, K. M., Chourdakis, G., Georgoussis, G., Kratzer, S., 2012. Sudies of aerosols advected to coastal areas with use of remote techniques. Acta Geophys. 60 (5), 1359-1385, http://dx.doi.org/10.2478/s11600-011-0075-4.
  • [36] Zielinski, T., Zielinski, A., 2002. Aerosol extinction and optical thickness in the atmosphere over the Baltic Sea determined with lidar. J. Aerosol Sci. 33 (6), 47-61.
Uwagi
Opracowanie ze środków MNiSW w ramach umowy 812/P-DUN/2016 na działalność upowszechniającą naukę (zadania 2017).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d12db405-fba0-4e69-9b29-1488bc4cf75e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.