PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Effect of Aluminum Content on the Combustion Performance of HTPB/AP/Al Propellants under High Combustion Pressure

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Combustion mechanisms of propellants under high combustion pressure are extremely important for the development of high-pressure solid rocket motors. The combustion characteristics of three HTPB propellants prepared with an aluminum content of 1%, 10%, and 18% were evaluated in this study by analyzing the extinguished propellant surface, the combustion flame, and the temperature profile in the combustion pressure range of 12-30 MPa. The results showed that the burning surface temperature of the three propellants increased from 425 to 535 and to 643 ℃ as the aluminum content was increased from 1% to 18%, resulting in a faster thermal decomposition rate of the binder than the thermal decomposition rate of the AP particles. Consequently, the morphology of the extinguished propellant surface evolved from concave into convex, and the higher the aluminum content, the more obvious became the convex morphology. The combustion flame height of the three propellants showed a downward trend when the combustion pressure was increased from 12 to 18 MPa, enhancing the heat feedback to the burning surface. The burning surface temperature of the three samples increased by 75, 105 and 189 ℃, respectively, with the increase in combustion pressure, resulting in a more distinct degree of concave and convex morphology of the extinguished propellant surface. In addition, this demonstrated that the local heat and mass transfer might play a dominant role under high pressures.
Rocznik
Strony
14--35
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
  • Northwestern Polytechnical University, China
autor
  • Northwestern Polytechnical University, China
  • Northwestern Polytechnical University, China
autor
  • Northwestern Polytechnical University, China
Bibliografia
  • [1] Atwood, A. I.; Ford, K.P.; Wheeler, C.J. High-Pressure Burning Rate Studies of Solid Rocket Propellants. Prog. Propul. Phys. 2013, 4: 3-14; DOI: 10.1051/eucass/201304003.
  • [2] Dillier, C.A.; Demko, A.; Stahl, J.; Reid, D.; Petersen, E.L. Temperature Sensitivity of AP/HTPB-based Rocket Propellants Using a New High-Combustion Pressure Strand Burner. Proc. 55th AIAA Aerosp. Sci. Meet., Grapevine, TX, 2017, 1-9.
  • [3] Dillier, C.A.; Petersen, E.D.; Sammet, T.; Rodriguez, F.A.; Thomas, J.C.; Petersen, E.L. Very-High-Combustion Pressure Burning Rates of AP/HTPB-composite Propellants with Varying AP Particle Sizes and Distributions. Proc. Propulsion and Energy Forum, Indianapolis, IN, 2019, 1-6.
  • [4] Dillier, C.A.; Sammet, T.; Rodriguez, F.A.; Petersen, E.D.; Petersen, E.L. Aluminized and non-Aluminized AP/HTPB-composite Propellant Burning Rates at Very-High Combustion Pressures. Proc. 27th Int. Colloq. on the Dynamics of Explosions and Reactive Systems (ICDERS), Beijing, China, 2019, 1-6.
  • [5] Stephens, M.; Sammet, T.; Petersen, E.; Carro, R.; Wolf, S.; Smith, C. Performancem of Ammonium-Perchlorate-Based Composite Propellant Containing Nanoscale Aluminum. J. Propul. Power. 2010, 26(3): 461-466; DOI: 10.2514/1.45148.
  • [6] Thomas, J.C.; Morrow, G.R.; Dillier, C.A.; Petersen, E.L. Comprehensive Study of AP Particle Size and Loading Effects on the Burning Rates of Composite AP/HTPB Propellants. Proc. Propulsion and Energy Forum, Cincinnati, OH, 2018, 1-10.
  • [7] Liu, J.; Yuan, J.; Li, H.; Pang, A.; Xu, P.; Tang, G.; Xu, X. Thermal Oxidation and Heterogeneous Combustion of AlH₃ and Al: A Comparative Study. Acta Astronaut. 2021, 179: 636-645; DOI: 10.1016/j.actaastro.2020.11.039.
  • [8] Jeenu, R.; Pinumalla, K.; Deepak, D. Size Distribution of Particles in Combustion Products of Aluminized Composite Propellant. J. Propul. Power. 2010, 26(4): 715-723; DOI: 10.2514/1.43482.
  • [9] Yao, E.; Zhao, F.; Xu, S.; Hu, R.; Xu, H.; Hao, H. Combustion Characteristics of Composite Solid Propellants Containing Different Coated Aluminum Nanopowders. Adv. Mater. Res. 2014, 924: 200-211; DOI: 10.4028/www.scientific.net/AMR.924.200.
  • [10] Guo, Y.; Li, J.; Gong, L.; Xiao, F.; Meng, L. Effect of Organic Fluoride on Combustion Performance of HTPB Propellants with Different Aluminum Content. Combust. Sci. Technol. 2021, 193(4): 1-14; DOI: 10.1080/00102202.2019.1669576.
  • [11] Anand, K.V.; Roy, A.; Mulla, I.; Balbudhe, K.; Jayaraman, K.; Chakravarthy, S.R. Experimental Data and Model Predictions of Aluminum Agglomeration in Ammonium Perchlorate-based Composite Propellants Including Plateau-burning Formulations. Proc. Combust. Inst. 2013, 34(2): 2139-2146; DOI: 10.1016/j.proci.2012.07.024.
  • [12] Dokhan, A.; Price, E.W.; Seitzman, J.M.; Sigman, R.K. The Effects of Bimodal Aluminum with Ultrafine Aluminum on the Burning Rates of Solid Propellants. Proc. Combust. Inst. 2002, 29(2): 2939-2945; DOI: 10.1016/S1540-7489(02)80359-5.
  • [13] Yuan, J.; Liu, J.; Zhou, Y.; Wang, J.; Xv, T. Aluminum Agglomeration of AP/HTPB Composite Propellant. Acta Astronaut. 2019, 156: 14-22; DOI: 10.1016/j.actaastro.2018.11.009.
  • [14] Jin, B.; Wang, Z.; Xu, G.; Ao, W.; Liu, P. Three-Dimensional Spatial Distributions of Agglomerated Particles on and near the Burning Surface of Aluminized Solid Propellant Using Morphological Digital In-Line Holography. Aerosp. Sci. Technol. 2020, 106(1) paper 106066: 1-14; DOI: 10.1016/j.ast.2020.106066.
  • [15] Galfetti, L.; DeLuca, L.T.; Severini, F.; Colombo, G.; Meda, L.; Marra, G. Pre and post-Burning Analysis of nano-Aluminized Solid Rocket Propellants. Aerosp. Sci. Technol. 2017, 11(1): 26-32; DOI: 10.1016/j.ast.2006.08.005.
  • [16] Babuk, V.A.; Dolotkazin, I.N.; Glebov, A.A. Burning Mechanism of Aluminized Solid Rocket Propellants Based on Energetic Binders. Propellants Explos. Pyrotech. 2005, 30(4): 281-290; DOI: 10.1002/prep.200500012.
  • [17] Liu, X.; Ao, W.; Liu, H.; Liu, P. Aluminum Agglomeration on Burning Surface of NEPE Propellants at 3-5 MPa. Propellants Explos. Pyrotech. 2017, 42(3): 260-268; DOI: 10.1002/prep.201600131.
  • [18] Ao, W.; Liu, P.; Yang, W. Agglomerates, Smoke Oxide Particles, and Carbon Inclusions in Condensed Combustion Products of an Aluminized GAPbased Propellant. Acta Astronaut. 2016, 129: 147-153; DOI: 10.1016/j.actaastro.2016.09.011.
  • [19] Liu, H.; Ao, W.; Liu, P.; Hu, S.; Lv, X.; Gou, D.; Wang, H. Experimental Investigation on the Condensed Combustion Products of Aluminized GAP-based Propellants. Aerosp. Sci. Technol. 2020, 97 paper 105595: 1-11;DOI: 10.1016/j.ast.2019.105595.
  • [20] Yavor, Y.; Rosenband, V.; Gany, A. Reduced Agglomeration in Solid Propellants Containing Porous Aluminum. J. Aerosp. Eng. 2014, 228(10): 1857-1862; DOI: 10.1177/09544100134956.
  • [21] Yavor, Y.; Rosenband, V.; Gany, A. Reduced Agglomeration Resulting from Nickel Coating of Aluminum Particles in Solid Propellants. Int. J. Energ. Mater. Chem. Propul. 2010, 9(6): 477-492; DOI: 10.1615/IntJEnergeticMaterialsChemProp.2011001385.
  • [22] Tang, E.; Luo, H.; Han, Y.; Chen, C.; Chang, M.; Guo, K.; He, L. Experimental Study on Burning of Two Al/PTFE Samples. Appl. Therm. Eng. 2020, 180: 115857; DOI: 10.1016/j.applthermaleng.2020.115857.
  • [23] Sippel, T.R.; Son, S.F.; Groven, L.J. Aluminum Agglomeration Reduction in a Composite Propellant Using Tailored Al /PTFE Particles. Combust. Flame 2014, 161: 311-321; DOI: 10.1016/j.combustflame.2013.08.009.
  • [24] Beckstead, M.W. A Summary of Aluminum Combustion. In: Internal Aerodynamics in Solid Rocket Propulsion. RTO EN-023 (AVT-096), 2004, pp. 5/1-46; ISBN 92-837-1103-3.
  • [25] Ao, W.; Liu, X.; Rezaiguia, H.; Liu, H.; Wang, Z; Liu, P. Aluminum Agglomeration Involving the Second Mergence of Agglomerates on the Solid Propellants Burning Surface: Experiments and Modeling. Acta Astronaut. 2017, 136: 219-229; DOI: 10.1016/j.actaastro.2017.03.013.
  • [26] Dokhan, A.; Price, E.W.; Seitzman, J.M.; Sigman, R.K. The Ignition of Ultra-Fine Aluminum in Ammonium Perchlorate Solid Propellant Flames. Proc. 39th AIAA/ASME/SAE/ASEE Joint Propul. Conf. and Exhibit, Huntsville, AL, 2003, 1-9; DOI: 10.2514/6.2003-4810.
  • [27] Geisler, R.L. A Global View of the Use of Aluminum Fuel in Solid Rocket Motors. Proc. 38th AIAA/ASME/SAE/ASEE Joint Propul. Conf. and Exhibit, Indianapolis, IN, 2002, 1-8; DOI: 10.2514/6.2002-3748.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d12b5265-60b1-4b2d-a27b-4df670c9feb6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.