PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance evaluation modeling a Microelectromechanical system based Finite Element piezoelectric Shear Actuated Beam

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Modelowanie właściwości system MEMS na przykładzie siłownika piezoelektrycznego
Języki publikacji
EN
Abstrakty
EN
This paper presents the modeling a Microelectromechanical systems (MEMS) based Piezoelectric shear actuated beam by using COMSOL Multiphysics software of version 4.3a. The overall dimensions model of the beam is of 0.1-m long, 0.03-m width and 0.018-m thickness. For this model the structural mechanics boundary conditions are of the cantilever beam is fixed at its surfaces at x = 0 and that all other surfaces are free. In this model applied, the different materials (i.e., Silicon, Titanium, Barium titanate, Lead zirconate titanate, Material) with voltages between the top and bottom surfaces of the piezoceramic domain (i.e., 15V, 35V) have been analyzed. Firstly, select the Structural Mechanics of the Piezoelectric Devices and analyzed changing the selecting physics. Secondly, defining the Geometry on deflection of sandwiched beam is setting the boundary condition and analyzed changing of the beam. Thirdly, the beam is composed of a 0.001-m thick flexible foam core sandwiched by two 0.002-m thick silicon and titanium layers. In the Fourth step, bend of beam is analyzed by changing both materials of sandwiched beam and mashing of the defection beam is display by changing both thickness and electric potential. Finally, the results of analysis allowed to conclude us to design a piezoelectric shear actuated beam with different ranges and resolutions, under the condition of changing both thickness and material of electrodes gives the optimum deflection of 0.0308-um and 0.0815-um under 15V input voltage with different materials.
PL
W artykule zaprezentowano metodę projektowania układów typu MEMS na przykładzie piezoelektrycznego siłownika. Dla siłownika zaproponowano model numeryczny oraz warunki brzegowe. Przedstawiono obliczenia dla różnych materiałów i różnych konstrukcji.
Rocznik
Strony
5--8
Opis fizyczny
Bibliogr. 13 poz., rys., tab.
Twórcy
autor
  • Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia (UKM)
autor
  • Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia (UKM)
autor
  • Department of Electrical, Electronic and Systems Engineering, Universiti Kebangsaan Malaysia (UKM)
Bibliografia
  • [1] Lifshitz, R. and M.L., Roukes, Thermoelastic damping in micro and nanomechanical systems, Physical review. 6(2000), 5600-5609
  • [2] Roszhart, T.V., The effect of thermoelastic internal friction on the Q of micromachined silicon resonator, Tech.Dig.Solid-State Sens Actutaor Workshop,Hilton Head, SC. (1990), 13-16
  • [3] Vengallatore, S., Analysis of thermoelastic damping in laminated composite micromechanical beam resonator, J.Micromech.Microeng, (2005), 2398-2404.
  • [4] Zamanian, M. and S.E., Khadem, Mechanical & Aerospace Engineering Department, Tehran,Iran. Analysis of thermoelastic damping in microresonators by considering the stretching effect, International Journal of Mechanical Sciences (2010).
  • [5] Freeman, M.D., Micro electro mechanical systems. MEMS handbook edited by Mohammad Gad-El-Hak University of Notre Dame
  • [6] Thaysen, J. and A. Boisen, Atomic force microscopy probe with piezoresistive read out and a highly symmetrical Wheatstone bridge arrangement, Sensors and Actuators, 83(2000), 47–53
  • [7] Gotszalk, T.P., Grabiec, and I.W., Rangelow, Piezoresistive sensors for Scanning probe microscopy, Ultramicroscopy, 82(2000), 39–48
  • [8] Pinnaduwage, L.A.A., Gehl, D.L., Hedden, G., Muralidharan, T., Thundat, R.T., Lareau, T., Sulchek, L., Manning, B., Rogers, M., Jones and J.D., Adams, A microsensor for trinitrotoluene vapor, Nature, 425 (2003), 474
  • [9] Benjeddou, A.M.A., Trindade and R., Ohayon, A unified beam finite element model for extension and shear piezoelectric actuation mechanisms, Journal of Intelligent Material Systems and Structures, 8
  • [10] Benjeddou, A.M.A., Trindade and R., Ohayon, New Shear Actuated Smart Structure Beam Finite Element, 37(1999), 1-10
  • [11] Ahangar, S.G., Rezazadeh, R., Shabani, G., Ahmadi and A., Toloei, On the stability of a micro beam conveying fluid considering modified couple stress theory, International Journal of Mechanics and Materials in Design, 7(2011), 327–342.
  • [12] Yin, L.Q., Qian, L.,Wang and W., Xia, Vibration analysis of microscale plates based on modified couple stress theory, Acta Mechanica Solida Sinica, 23(2010), 386–393
  • [13] Ke, L.L. and Y.S., Wang, Size effect on dynamic stability of functionally graded micro beams based on a modified couple stress theory, Composite Structures, 93(2011), 342–350
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d126eefd-2fec-4f13-a1ce-df4799dc3f7e
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.