PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Maximum Margin Clustering Using Extreme Learning Machine

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
PL
Nowa metoda klastrowania – extreme margin clustering EMC w systemach extreme learning machine ELM
Języki publikacji
EN
Abstrakty
EN
Maximum margin clustering (MMC) is a newly proposed clustering method, which extends large margin computation of support vector machine (SVM) to unsupervised learning. But in nonlinear cases, time complexity is still high. Since extreme learning machine (ELM) has achieved similar generalization performance at much faster learning speed than traditional SVM and LS-SVM, we propose an extreme maximum margin clustering (EMMC) algorithm based on ELM. It can perform well in nonlinear cases. Moreover, the kernel parameters of EMMC need not be tuned by means of random feature mappings. Experimental results on several real-world data sets show that EMMC performs better than traditional MMC methods, especially in handling large scale data sets.
PL
Opisano nową metodę klastrowania „maximum margin clusterung MMC” która rozszerza wielkość marginesu obliczeń numerycznych w systemie SVM z uczeniem bez nadzoru. Nowa metoda EMMC (extreme maximum margin clustering) zapewnia szybsze uczenie, szczególnie w warunkach nieliniowości.
Rocznik
Strony
202--204
Opis fizyczny
Bibliogr. 12 poz., wykr.
Twórcy
autor
  • School of Computer Science and Technology, China University of Mining and Technology, Xu Zhou, 221116, China
autor
  • School of Computer Science and Technology, China University of Mining and Technology, Xu Zhou, 221116, China
autor
  • School of Computer Science and Technology, China University of Mining and Technology, Xu Zhou, 221116, China
Bibliografia
  • [1] L. Xu, J. Neufeld, B. Larson, D. Schuurmans, Maximum margin clustering, Advances in neural information processing systems, 17 (2004) 1537-1544.
  • [2] J.F. Sturm, Using SeDuMi 1.02, a MATLAB toolbox for optimization over symmetric cones, Optimization methods and software, 11 (1999) 625-653.
  • [3] K.C. Toh, M.J. Todd, R.H. Tütüncü, SDPT3—a MATLAB software package for semidefinite programming, version 1.3, Optimization methods and software, 11 (1999) 545-581.
  • [4] H. Valizadegan, R. Jin, Generalized maximum margin clustering and unsupervised kernel learning, Advances in Neural Information Processing Systems, 19 (2007) 1417.
  • [5] K. Zhang, I.W. Tsang, J.T. Kwok, Maximum margin clustering made practical, Neural Networks, IEEE Transactions on, 20 (2009) 583-596.
  • [6] G.B. Huang, K. Mao, C.K. Siew, D.S. Huang, Fast modular network implementation for support vector machines, Neural Networks, IEEE Transactions on, 16 (2005) 1651-1663.
  • [7] C.W. Hsu, C.J. Lin, A comparison of methods for multiclass support vector machines, Neural Networks, IEEE Transactions on, 13 (2002) 415-425.
  • [8] Q. Liu, Q. He, Z. Shi, Extreme support vector machine classifier, Lecture Notes in Computer Science, 5012 (2008) 222-233.
  • [9] G.B. Huang, H. Zhou, X. Ding, R. Zhang, Extreme learning machine for regression and multiclass classification, Systems, Man, and Cybernetics, Part B: Cybernetics, IEEE Transactions on, (2010) 1-17.
  • [10] Y.H. Pao, G.H. Park, D.J. Sobajic, Learning and generalization characteristics of the random vector functional-link net, Neurocomputing, 6 (1994) 163-180.
  • [11] L.P. Wang, C.R. Wan, Comments on “The Extreme Learning Machine”, Neural Networks, IEEE Transactions on, 19 (2008) 1494-1495.
  • [12] L. Xu, D. Wilkinson, F. Southey, D. Schuurmans, Discriminative unsupervised learning of structured predictors, in:Poceedings of the 23rd international conference on Machine learning ,2006, pp. 1057-1064.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1220c95-fd2a-4f02-bc82-00b6bc65f8a2
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.