PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bounded, asymptotically stable, and L1 solutions of caputo fractional differential equations

Autorzy
Treść / Zawartość
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The existence of bounded solutions, asymptotically stable solutions, and L1 solu­tions of a Caputo fractional differential equation has been studied in this paper. The results are obtained from an equivalent Volterra integral equation which is derived by inverting the fractional differential equation. The kernel function of this integral equation is weakly singular and hence the standard techniques that are normally applied on Volterra integral equations do not apply here. This hurdle is overcomed using a resolvent equation and then applying some known properties of the resolvent. In the analysis Schauder's fixed point theorem and Liapunov's method have been employed. The existence of bounded solutions are obtained employing Schauder's theorem, and then it is shown that these solutions are asymptotically stable by a definition found in [C. Avramescu, C. Vladimirescu, On the existence of asymptotically stable solution of certain integral equations, Nonlinear Anal. 66 (2007), 472-483]. Finally, the L1 properties of solutions are obtained using Liapunov's method
Rocznik
Strony
181--190
Opis fizyczny
Bibliogr. 12 poz.
Twórcy
autor
  • University of Dayton Department of Mathematics Dayton, OH 45469-2316 USA
Bibliografia
  • [1] F.M. Atici, P.W. Eloe, Initial value problems in discrete fractional calculus, Proc. Amer. Math. Soc. 137 (2009), 981-989.
  • [2] C. Avramescu, C. Vladimirescu, On the existence of asymptotically stable solution of certain integral equations, Nonlinear Anal. 66 (2007), 472-483.
  • [3] L.C. Becker, Resolvents and solutions of weakly singular linear Volterra integral equa­tions, Nonlinear Anal. 74 (2011), 1892-1912.
  • [4] T.A. Burton, Liapunov Theory for Integral Equations with Singular Kernels and Frac­tional Differential Equations, CreateSpace Independent Publishing Platform, 2012.
  • [5] T.A. Burton, Bo Zhang, Lp-solutions of fractional differential equations, Nonlinear Stud. 19 (2012), 307-324.
  • [6] K. Diethelm, The Analysis of Fractional Differential Equations, Springer, New York, 2004.
  • [7] CM. Kirk, W.E. Olmstead, Blow-up solutions of the two-dimensional heat equation due to a localized moving source, Anal. Appl. 3 (2005), 1-16.
  • [8] V. Lakshmikantham, S. Leela, J. Vasundhara Devi, Theory of Fractional Dynamic Sys­tem, Cambridge Scientific Publishers, Cambridge, 2009.
  • [9] W.R. Mann, F. Wolf, Heat transfer between solids and gases under nonlinear boundary conditions, Quart. Appl. Math. 9 (1951), 163-184.
  • [10] R.K. Miller, Nonlinear Volterra Integral Equations, Benjamin, New York, 1971.
  • [11] R.S. Nicholson, I. Shain, Theory of stationary electrode polography, Analytical Chemi­stry 36 (1964), 706-723.
  • [12] H.F. Weinberger, A First Course in Partial Differential Equations with Complex Vari­ables and Transform Methods, Blasidell, New York, 1965.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d120fdd0-a5e4-4dd2-b123-09f4b4be66db
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.