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Abstract. The existence of bounded solutions, asymptotically stable solutions, and L1 solu-
tions of a Caputo fractional differential equation has been studied in this paper. The results
are obtained from an equivalent Volterra integral equation which is derived by inverting
the fractional differential equation. The kernel function of this integral equation is weakly
singular and hence the standard techniques that are normally applied on Volterra integral
equations do not apply here. This hurdle is overcomed using a resolvent equation and then
applying some known properties of the resolvent. In the analysis Schauder’s fixed point the-
orem and Liapunov’s method have been employed. The existence of bounded solutions are
obtained employing Schauder’s theorem, and then it is shown that these solutions are asymp-
totically stable by a definition found in [C. Avramescu, C. Vladimirescu, On the existence
of asymptotically stable solution of certain integral equations, Nonlinear Anal. 66 (2007),
472–483]. Finally, the L1 properties of solutions are obtained using Liapunov’s method.
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1. INTRODUCTION

We consider the Caputo fractional differential equation of order q

cDqx(t) = f(t)− g(t, x(t)), x(0) = x0 ∈ R, 0 < q < 1, (1.1)

where f, g : [0,∞)→ R are continuous functions.

c© AGH University of Science and Technology Press, Krakow 2015 181



182 Muhammad N. Islam

Equation (1.1) can be inverted into the equivalent Volterra integral equation

x(t) = x0 −
1

Γ(q)

t∫

0

(t− s)q−1[g(s, x(s))− f(s)]ds (1.2)

where Γ is the gamma function. The proof of this inversion can be found in ([8], p. 54),
or ([6], pp. 78, 86, 103).

In this paper we prove the existence of bounded solutions, asymptotically stable
solutions, and L1 solutions of (1.2) when g(t, x) = x+h(t, x). In the analysis we use the
resolvent equation for a linear Volterra equation, Schauder fixed point theorem, and
Liapunov’s method. Schauder’s fixed point theorem is used to obtain the existence of
bounded solutions. Then it is shown that these solutions are asymptotically stable by
a definition given in [2]. Finally, Liapunov’s method is used to show the L1 properties
of solutions under certain conditions.

Let
C(t− s) =

1

Γ(q)
(t− s)q−1, 0 < q < 1. (1.3)

Then, for g(t, x) = x+ h(t, x), equation (1.2) can be written as the familiar Volterra
integral equation

x(t) = x0 −
t∫

0

C(t− s)[x(s) + h(s, x(s))− f(s)]ds. (1.4)

Let us present some known results regarding the Volterra equation (1.4) and the
associated resolvent equation (cf. [10, pp. 189–193]). A function x(t) is a solution of
(1.4) if and only if x(t) satisfies

x(t) = y(t)−
t∫

0

R(t− s)[h(s, x(s))− f(s)]ds, (1.5)

where the function y(t) is given by

y(t) = x0 −
t∫

0

R(t− s)x0ds, (1.6)

and the function R(t), known as the resolvent kernel of C(t), is the solution of the
resolvent equation

R(t) = C(t)−
t∫

0

C(t− s)R(s)ds. (1.7)

The function C(t) defined in (1.3) is completely monotone on [0,∞) in the sense
that (−1)mC(m)(t) ≥ 0 for m = 0, 1, 2, . . . and t ∈ (0,∞). This C(t) satisfies the
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conditions of Theorem 6.2 of [10], which states that the associated resolvent kernel
R(t) satisfies, for all t ≥ 0,

0 ≤ R(t) ≤ C(t), R(t)→ 0 as t→∞, (1.8)

and that

C(t) 6∈ L1[0,∞)⇒
∞∫

0

R(t)dt = 1. (1.9)

Also, it is stated in Theorem 7.2 of [10] that the resolvent R(t) is completely
monotone on 0 ≤ t <∞.

The information presented above is found in [4], which contains a considerable
amount of work on the use of resolvent in the study of Caputo fractional differential
equation (1.1).

From (1.9) we see that R(t) ∈ L1[0,∞). Therefore,
∫ t
0
R(t− s)ds is continuous in

t for all t ≥ 0, and for t2 ≥ t1, the resolvent R satisfies the following property.

t1∫

0

[R(t2 − s)−R(t1 − s)]ds→ 0, (1.10)

as |t1 − t2| → 0.
We remark that the function C(t, s) = C(t− s) defined in (1.3) is weakly singular

on 0 ≤ s ≤ t <∞ by the following definition. This definition is obtained from [3]. It
can also be found in ([4, p. 25]).

Definition 1.1. Let ΩT := {(t, s) : 0 ≤ s ≤ t ≤ T}. Function C(t, s) is weakly
singular on the set ΩT if it is discontinuous in ΩT ; but for each t ∈ [0, T ], C(t, s) has
at most finitely many discrete discontinuities in the interval 0 ≤ s ≤ t and for every
continuous function φ : [0, T ]→ R

t∫

0

C(t, s)φ(s)ds

and
t∫

0

|C(t, s)|ds

both exist and are continuous on [0, T ]. If C(t, s) is weakly singular on ΩT for every
T > 0, then it is weakly singular on the set ΩT := {(t, s) : 0 ≤ s ≤ t <∞}.

We observe that the kernels of Volterra integral equations obtained from Caputo
fractional differential equations with 0 < q < 1 are weakly singular. Caputo fractional
differential equations arise in many applications. Even the single value of q = 1

2 is
found in a number of important real-world problems (cf. [7, 9–12]).
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In recent years, many researchers have focused on discrete fractional calculus,
which includes fractional difference equations. We refer to [1] and the references
therein for some studies on discrete fractional calculus.

Let R+ := [0,∞) and

BC := {x : R+ → R, x is bounded and continuous}.

Then BC is a Banach space with the norm ‖x‖ = supt≥0 |x(t)|.

Definition 1.2 ([2]). A function x is said to be asymptotically stable solution of
equation (1.2) if for every ε > 0, there exists a T = T (ε) such that for every t ≥ T,
and for every other solution y of (1.2), |x(t)− y(t)| ≤ ε.

Define the space Cl ⊂ BC by

Cl := {x ∈ BC, lim
t→∞

x(t) ∈ R exists}.

Definition 1.3. A family A ⊂ Cl is called equiconvergent if for every ε > 0, there
exists a T (ε) > 0, such that for all x ∈ A, and for all t1, t2 ≥ T , |x(t1)− x(t2)| ≤ ε.

On the space Cl the following compactness criterion holds (see [2]).

Lemma 1.4. A family A ⊂ Cl is relatively compact if and only if

(a) A is uniformly bounded,
(b) A is equicontinuous on compact subsets of R+,
(c) A is equiconvergent.

We now present a lemma that will be used in this paper later.

Lemma 1.5. Suppose, for a function K(t, s), 0 ≤ s ≤ t <∞, the following hypotheses
hold:

(H1) there exists M > 0 such that

t∫

0

|K(t, s)|ds ≤M for all t ∈ R+,

(H2) for all T > 0, one has

lim
t→∞

T∫

0

K(t, s)ds = 0,

(H3)

lim
t→∞

t∫

0

K(t, s)ds = 1.
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Then for every x ∈ Cl,

lim
t→∞

t∫

0

K(t, s)x(s)ds = lim
t→∞

x(t).

A proof of Lemma 1.5 is available in [2].

2. BOUNDED SOLUTIONS AND ASYMPTOTICALLY STABLE SOLUTIONS

Let ρ > 0 be a constant, and let Bρ := {x ∈ R, |x| ≤ ρ}. In this section we prove
the existence of bounded solutions and asymptotically stable solutions for continuous
h : R+ ×Bρ → R.

For g(t, x) = x+h(t, x), equation (1.4) is the equivalent integral equation of (1.1).
Since (1.4) and (1.5) are equivalent, we show the existence of bounded and asymp-
totically stable solutions of (1.1) by showing the same properties for the solutions
of (1.5).

Let
mρ := sup{|h(t, x)− f(t)|, t ∈ R+, x ∈ Bρ} <∞. (2.1)

Suppose

(A1) there exists a θ ∈ R, such that limt→∞(h(t, x)−f(t)) = θ uniformly with respect
to x ∈ Bρ.

Theorem 2.1. Suppose assumption (A1) holds. Also, suppose there exists a ρ > 0
such that

sup{|y(t)|, t ∈ R+}+mρ < ρ. (2.2)
Then equation (1.5) has at least one solution in Sρ, where

Sρ := {x ∈ Cl, ‖x‖ ≤ ρ}.
Moreover, every solution in Sρ is asymptotically stable.

Proof. For x ∈ Sρ define H by

Hx(t) = y(t)−
t∫

0

R(t− s)[h(s, x(s))− f(s)]ds, (2.3)

where y(t) satisfies (1.6).
The function R(t− s) satisfies the hypotheses of Lemma 1.5. Clearly, one can see

from (1.9), that R satisfies (H1) and (H3). It is easy to verify that the kernel C defined
in (1.3) satisfies (H2). Therefore, by (1.8), the resolvent R satisfies (H2).

Therefore, by Lemma 1.5,

lim
t→∞

t∫

0

R(t− s)[h(s, x(s))− f(s)]ds = θ, (2.4)

the limit being uniform with respect to x ∈ Sρ.
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It follows from (1.6), (1.8) and (1.9) that y(t) is bounded, and that
limt→∞ y(t) = 0. Therefore HSρ ⊂ Cl. In addition, using (2.1), (2.2), along with
(1.8) and (1.9) one obtains from (2.3),

|Hx(t)| ≤ |y(t)|+
t∫

0

|R(t− s)||h(s, x(s))− f(s)|ds

≤ |y(t)|+mρ

t∫

0

R(s)ds

≤ |y(t)|+mρ < ρ.

This shows that HSρ ⊂ Sρ, which means HSρ is uniformly bounded.
Let us define the operators: U : Sρ → Cl and V : Sρ → Cl, by

(Ux)(t) =

t∫

0

R(t− s)x(s)ds,

and

(V x)(t) = h(t, x(t))− f(t),

for all t ∈ R+.
Clearly, U is a linear operator, and hence is continuous. The operator V is continu-

ous because the function h is continuous in x. Therefore, the operator H is continuous,
because Hx = y + (U ◦ V )x, for all x ∈ Sρ.

From (1.6) and (1.9), it follows that limt→∞ y(t) = 0. Therefore, from (2.3) and
(2.4) we see that limt→∞(Hx)(t) = θ uniformly with respect to x ∈ Sρ. This implies
that HSρ is equiconvergent.

We have already shown that the set HSρ is uniformly bounded. Now, we show
that HSρ is equicontinuous on compact subsets of R+. For this, it is sufficient to
show that HSρ is equicontinuous on interval [0, γ], for any γ > 0. From (1.9), we see
R ∈ L1(R+). Since the convolution of a continuous function and an L1 function is
continuous, the function y(t) defined in (1.6) is continuous for t ≥ 0. Therefore, y(t)
is uniformly continuous on [0, γ].

Let ε > 0 be arbitrary. Then there exists a δ > 0 such that t1, t2 ∈ [0, γ], with
|t1 − t2| < δ implies |y(t1) − y(t2)| < ε

3 ,
∫ t1
0
|R(t1 − s) − R(t2 − s)|ds < ε

3mρ
. The

second property follows from (1.10). Also, we can say that
∫ t2
t1
|R(t2, s)|ds < ε

3mρ
since

R ∈ L1[0,∞). Therefore, for x ∈ Sρ, and t1, t2 ∈ [0, γ],
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|(Hx)(t1)− (Hx)(t2)| ≤ |y(t1)− y(t2)|

+

t1∫

0

|R(t1 − s)−R(t2 − s)||h(s, x(s))− f(s)|ds

+

t2∫

t1

|R(t2, s)||h(s, x(s))− f(s)|ds

<
ε

3
+mρ

ε

3mρ
+mρ

ε

3mρ
= ε.

This shows that HSρ is equicontinuous on compact subsets of R+. Therefore, by
Lemma 1.4, the set HSρ is relatively compact. By Schauder’s fixed point theorem
there exists at least one solution of (1.5) in Sρ.

Now we show that all solutions of (1.5) in Sρ are asymptotically stable.
Let

φ(t) = sup{|h(t, x)− f(t)− θ|, x ∈ Bρ}

for all t ∈ R+, where θ is defined in assumption (A1). Then limt→∞ φ(t) = 0 uniformly
with respect to x ∈ Bρ. Since R(t) ∈ L1[0,∞), it follows from a known result ([4, p. 74,
Convolution Lemma]) that

lim
t→∞

t∫

0

R(t− s)φ(s)ds = 0. (2.5)

Let x1, x2 ∈ Sρ be two solutions of (1.5). Then x1(t) = (Hx1)(t), and x2(t) =
(Hx2)(t). Then for all t ≥ 0,

|x1(t)− x2(t)| ≤
t∫

0

|R(t− s)||[h(s, x1(s))− f(s)− θ]|ds

+

t∫

0

|R(t− s)||[h(s, x2(s))− f(s)− θ]|ds

≤ 2

t∫

0

|R(t− s)|φ(s)ds.

Then by (2.5), we have |x1(t)− x2(t)| → 0 as t→∞, showing that every solution
of (1.5) in Sρ is asymptotically stable. This concludes the proof of Theorem 2.1.
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3. SOLUTIONS WITH L1 PROPERTY

In this section we study the L1 property of solutions of (1.5) when x0 = 0. In that
case y(t) = 0 by (1.6). Then equation (1.5) becomes

x(t) = −
t∫

0

R(t− s)[h(s, x(s))− f(s)]ds. (3.1)

Let

a(t) =

t∫

0

R(t− s)f(s)ds. (3.2)

Then (3.1) becomes

x(t) = a(t)−
t∫

0

R(t− s)h(s, x(s))ds. (3.3)

Theorem 3.1. Suppose f is bounded, and there exists a k < 1 such that |h(t, x)| ≤
k|x| for all x ∈ R, t ≥ 0. Then any bounded solution function x(t) of (3.3) is in
L1(R+).

Proof. Since f is bounded and R satisfies the properties (1.8) and (1.9), the function
a(t) of (3.2) is in L1(R+). From (3.3)

|x(t)| ≤ |a(t)|+
t∫

0

R(t− s)|h(s, x(s))|ds

≤ |a(t)|+ k

t∫

0

R(t− s)|x(s)|ds.

This implies

−k
t∫

0

R(t− s)|x(s)|ds ≤ |a(t)| − |x(t)|. (3.4)

Define a Liapunov function V by

V (t) = k

t∫

0

∞∫

t−s

R(u)du|x(s)|ds, (3.5)
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where x is a bounded solution of (3.3). Then differentiating V (t) and using (3.4) along
with (1.8) and (1.9) yields

V ′(t) = k

∞∫

0

R(u)du|x(t)| − k
t∫

0

R(t− s)|x(s)|ds

≤ k|x(t)|+ |a(t)| − |x(t)|
= (k − 1)|x(t)|+ |a(t)|.

Integrating both sides of the above inequality from 0 to t we obtain,

V (t)− V (0) ≤ (k − 1)

t∫

0

|x(s)|ds+

t∫

0

|a(s)|ds.

Since V (t) ≥ 0, V (0) = 0 and (k − 1) < 0,

(1− k)

t∫

0

|x(s)|ds ≤
t∫

0

|a(s)|ds.

This shows that x ∈ L1(R+) because a ∈ L1(R+). This concludes the proof of Theo-
rem 3.1.

We refer the interested readers to [5] for many results on Lp solutions of fractional
differential equations of Caputo type.

The property defined in (1.9) about C and R seems a bit unusual. Here is an
example on that property.

Example 3.2. For q = 1
2 , the kernel C defined in (1.3) is

C(t− s) =
1

Γ( 1
2 )

(t− s)− 1
2 .

Clearly, C 6∈ L1[0,∞). Employing the Laplace transform method, one can solve the
associated resolvent equation

R(t) = C(t)−
t∫

0

C(t− s)R(s)ds,

and obtains
R(t) =

1√
πt
− et erfc(

√
t).

This R satisfies
∫∞
0
R(t)dt = 1.
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