PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Bioaccumulation of Mercury by Bacteria Isolated from Small Scale Gold Mining Tailings in Lombok, Indonesia

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The activity of small scale gold mining (ASGM) in Indonesia has expanded to Lombok Island, West Nusa Tenggara. The use of mercury (Hg) and the traditional mining process cause that the ASGM tailings waste still contains Hg. The tailings waste is piled up near paddy fields and residential areas so that it has the potential to pollute the environment. This study aimed at isolating the bacteria that can accumulate Hg from the ASGM tailings in Lombok. The tailing samples were taken from Sekotong, Pujut, and Jonggat Districts, Lombok. The bacteria that have been isolated from the tailing samples were tested for their ability of Hg hemolysis resistance, and Hg bioaccumulation. Three bacteria with the highest Hg bioaccumulation ability were identified using the 16S rDNA gene squad. The results showed that out of 32 bacterial isolates, 27 isolates were found to be tolerant to Hg. Two bacterial isolates that were able to accumulate the highest amount of Hg and were identified as Fictibacillus nanhainensis (SKT-B) 82.25% and Bacillus toyonensis (PJM-F1) 81.21%. This study proved that the bacteria isolated from ASGM tailings have a great potential to be used as Hg bioaccumulation agents.
Rocznik
Strony
127--136
Opis fizyczny
Bibliogr. 36 poz., rys., tab.
Twórcy
  • Postgraduate Programme, Faculty of Agriculture, Brawijaya University, Jl. Veteran No.1, Malang 65145, Indonesia
  • Department of Biology, Faculty of Mathematics and Natural Sciences, Brawijaya University, Jl. Veteran No.1, Malang 65145, Indonesia
  • Department of Soil Science, Faculty of Agriculture, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
  • Department of Soil Science, Faculty of Agriculture, Brawijaya University, Jl. Veteran, Malang 65145, Indonesia
Bibliografia
  • 1. Affinnih, K.O., Salawu, I.S., Isah, A.S. 2014. Methods of available potassium assessment in selected soils of Kwara State, Nigeria. Agrosearch, 14(1), 76–87. http://dx.doi.org/10.4314/agrosh.v14i1.8.
  • 2. Araujo, A., Leite, L., De Iwata, B., De Lira, M., Xavier, G. M. Do Figueiredo .2012. Microbiological process in agroforestry systems: a review. Agronomy for Sustainable Development, 32(1), 215–226. doi: 10.1007/s13593–011–0026–0.
  • 3. Barkay, T., Miller, S.M., Summers, A.O. 2003. Bacterial mercury resistance from atoms to ecosystems. FEMS Microbiology Reviews, 27(2–3), 355–384. doi: 10.1016/S0168–6445(03)00046–9.
  • 4. Basu, N., Clarke, E., Green, A., Tagoe, B.C., Chan, L., Dzodzomenyo, M., Fobil, J., Long, R.N., Neitzel, R.L., Obiri, S., Odei, E., Ovadje, L., Quansah, R., Rajaeeand, M., Wilson, M.L. 2015. Integrated assessment of artisanal and small-scale gold mining in Ghana-Part 1: Human Health Review. International Journal of Environmental Research and Public Health, 12(5), 5143–5176. doi: 10.3390/ijerph120505143.
  • 5. Buxton, R. 2016. Blood Agar Plates and Hemolysis Protocols. American Society for Microbiology.
  • 6. Cappuccino, J., Welsh, C. 2017. Microbiology: A Laboratory Manual. Microbiology Eleventh edition. Pearson, Harlow.
  • 7. Chasanah, U., Nuraini, Y., Handayanto, E. 2018. The Potential of mercury-resistant bacteria isolated from small-scale gold mine tailings for accumulation of mercury. Journal of Ecological Engineering, 19(2), 236–245. doi: 10.12911/22998993/83565.
  • 8. Costa, R., Gomes, K.M., Duarte, R.S., da Costa Rachid, C.T.C., Rosado, A.S., Mangia, A.H.R. 2013. Diversity of Mercury resistant Escherichia coli strains isolated from aquatic systems in Rio de Janeiro, Brazil. International Journal of Biodiversity, 2013(265356), 1–8.
  • 9. Ekyastuti, W. and Setyawati, T. R. 2015. Identification and In Vitro Effectiveness Test of Four Isolates of Mercury-Resistant Bacteria as Bioaccumulation Agents of Mercury. Procedia Environmental Sciences, 28(1), 258–264. doi: 10.1016/j. proenv.2015.07.033.
  • 10. Epstein, W. 2003. The roles and regulation of potassium in bacteria. Progress in Nucleic Acid Research and Molecular Biology, 75(1), 293–320
  • 11. Fagorzi, C., Del Duca, S., Venturi, S., Chiellini, C., Bacci, G., Fani, R., Tassi, F. 2019. Bacterial Communities from extreme environments?: Vulcano Island. Diversity, 11(140), 1–17. doi: 10.3390/d11080140.
  • 12. Husen, E., Simanungkalit, R.D.M., Saraswati, R. 2007. Metode Analisis Biologi Tanah. Balai Besar Penelitian dan Pengembangan Sumberdaya Lahan Pertanian, Bogor, Indonesia.
  • 13. Ianieva, O. 2009. Mechanisms of bacteria resistance to heavy metals. Mikrobiolohichny? Zhurnal, 71(6), 54–65.
  • 14. Irawati, W., Patricia, Soraya, Y., Baskoro, A.H. 2013. A Study on mercury-resistant bacteria isolated from a gold mine in Pongkor Village, Bogor, Indonesia. HAYATI Journal of Biosciences, 19(4), 197–200. doi: 10.4308/hjb.19.4.197.
  • 15. Kahl, G. 2015. Methylation Variable Position (MVP). The Dictionary of Genomics, Transcriptomics and Proteomics. Nova Science Publishers, Inc. doi: 10.1002/9783527678679.dg07434.
  • 16. Kjeldahl, J. 1883. Neue Methode zur Bestimmung des Stickstoffs in organischen Körpern (in German). Fresenius, Zeitschrift. Analytical Chemiecal, 22(1), 366–382. https://doi.org/10.1007/BF01338151
  • 17. Krisnayanti, B.D. 2018. ASGM Status in West Nusa Tenggara Province, Indonesia. Journal of Degraded and Mining Lands Management, 5(2), 1077–1084. doi: 10.15243/jdmlm.2018.052.1077.
  • 18. Krisnayanti, B.D., Anderson, C.W.N., Utomo, W.H., Feng, X., Handayanto, E., Muddarisna, N., Ikram, H., Khususiah. 2012. Assessment of environmental mercury discharge at a four-year-old artisanal gold mining area on Lombok Island, Indonesia. Journal of Environmental Monitoring, 14(10), 2598–2607. doi: 10.1039/c2em30515a.
  • 19. Kuterbekov, K. 2019. Environmental Monitoring at A Former Uranium Milling Site. Springer Nature, Switzerland
  • 20. Lay, B.W., Hastowo, S. 1992. Mikrobiologi. Rajawali Pers, Jakarta.
  • 21. Ma?uszy?ski, M.J., D?browski, P., Ma?uszy?ska, I. 2019. Mercury content in upper layers of soils from the areas with various impacts of anthropogenic pressure. Journal of Ecological Engineering, 20(11), 13–17. https://doi.org/10.12911/22998993/113416
  • 22. Moore, E.W. 1968. Determination of pH by the glass electrode: pH Meter Calibration for Gastric Analysis. Gastroenterology, 54(4), 501–507.
  • 23. Morel, F.M.M., Kraepiel, A.M.L., Amyot, M. 1998. The chemical cycle and bioaccumulation of mercury. Annual Review Ecology System, 29(1), 543–566. doi: 10.1146/annurev.ecolsys.29.1.543.
  • 24. Muddarisna, N., Krisnayanti, B.D., Utami, S.R., a Handayanto, E. 2013. The potential of wild plants for phytoremediation of soil contaminated with mercury of gold cyanidation tailings. IOSR Journal of Environmental Science, Toxicology and Food Technology, 4(1), 15–19. doi: 10.9790/2402–0411519.
  • 25. Muller, A.K., Westergaard, K., Christense, S., SÖrensen, S.J. 2001. The Effect f long-term mercury pollution on the soil microbial community. FEMS Microbiology Ecology, 36(2001), 10–19. doi: 10.1111/j.1574–6941.2001.tb00821.x.
  • 26. Ojuederie, O.B., Babalola, O.O. 2017. Microbial and Plant-assisted bioremediation of heavy metal polluted environments: a review. International Journal of Environmental Research and Public Health, 14(12), 1–26. doi: 10.3390/ijerph14121504.
  • 27. Olsen, S.R., Cole, C.V., Watanabe, F.S., Dean, L.A. 1954. Estimation of available phosphorus in soils by extraction with sodium bicarbonate. Circular, 939, 19.
  • 28. Puspitasari, R. 2007. Laju polutan dalam ekosistem laut. Oseana, 32(2), 21–28. doi: 10.1007/s11695–013–0950-y.
  • 29. Rao, N.S.S. 1977. Soil microorganisms and plant growth. Oxford and IBH Publishing, New Delhi, India.
  • 30. Rasmussen, L.D., Zawadsky, C., Binnerup, S.J., Øregaard, G., Sørensen, S.J., Kroer, N. 2008. Cultivation of hard-to-culture subsurface mercury-resistant bacteria and discovery of new merA gene sequences. Applied and Environmental Microbiology, 74(12), 3795–3803. doi: 10.1128/AEM.00049–08.
  • 31. Sanjay, M.S., Sudarsanam, D., Raj, G.A., Baskar, K. 2018. Isolation and identification of chromium reducing bacteria from tannery effluent. Journal of King Saud University-Science, 32(1), 265–271. doi:10.1016/j.jksus.2018.05.001.
  • 32. Subandi. 2014. Mikrobiologi. Bandung. Remaja Rosdakarya
  • 33. Tjahjono, A., Suwarno, D. 2018. The spatial distribution of heavy metal lead and cadmium pollution and coliform abundance of waters and surface sediment in Demak. Journal of Ecological Engineering, 19(4), 43–54. https://doi.org/10.12911/22998993/89715
  • 34. Utomo, W.H., Suntari, R., Arfarita, N., Suhartini, Handayanto, E. 2014. Rehabilitation of artisanal small-scale gold mining land in West Lombok, Indonesia: 3. Exploration of indigenous plant species and the associated mycorrhiza for phytomycoremediation of mercury contaminated soils. American-Eurasian Journal of Sustainable Agriculture, 8(1), 34–41.
  • 35. Walkley, A., Black, I.A. 1934 An examination of the Degtjareff Method for determining soil organic matter and a proposed modification of the chromic acid titration method. Soil Science, 37(1), 29–38. http://dx.doi.org/10.1097/00010694–193401000–00003
  • 36. Waxman, S.A., Stevens, K.R. 1930. A critical study of the methods for determining the nature and abundance of soil organic matter. Soil Science, 30(1), 97–116.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d11e33ed-c515-4d7e-9ede-12a5075cd7ed
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.