PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Chiralne amidki litu : właściwości i wybrane zastosowania syntetyczne

Treść / Zawartość
Identyfikatory
Warianty tytułu
EN
Chiral lithium amides : properties and selected synthetic applications
Języki publikacji
PL
Abstrakty
EN
Reactions involving carbonyl groups are one of the most important transformations in organic chemistry. The nucleophilic properties of carbonyl compounds, when they are in the form of enolate ions, offer many possibilities for creating new carbon-carbon bonds in reactions with electrophiles. In the case of cyclic ketones, enolate formation can be stereocontrolled by deprotonation with the use of chiral lithium amides. Stereoselective formation of the chiral lithium enolate determines the stereochemistry of the product of the subsequent reaction with the electrophile. The induction of chirality in the reaction of enolate ions with electrophiles can also be achieved by using metals other than lithium, i.e. magnesium. When other alkali metals are used, an organometallic catalyst containing a chiral ligand must be present in the reaction. The presence of particular structural elements allow distinguishing the chiral lithium amides between eight major classes. Due to the high reactivity of lithium enolates, they are often converted into the silyl enol ether. This is done in two ways: internal quench (in situ reaction with TMSCl) or external quench. Due to aggregation of the chiral lithium amides and, thus, a decrease in asymmetric induction, the addition of LiCl is necessary for reactions run in external quench conditions. Although there are known examples of the use of chiral lithium amides in a catalytic amount in the deprotonation of epoxides, there is only one example of using less than stoichiometric amounts of chiral lithium amides in the deprotonation of ketones. There are many reports in the literature on the use of chiral lithium amides in total syntheses. The chiral lithium amides were used to form chiral enol silyl ether intermediates, e.g. in synthesis of chlortetaine or (+)-ibogamine. They are also used to form chiral lithium enolates which reacts directly with electrophiles, e.g. in synthesis of lasonolide A.
Rocznik
Strony
771--798
Opis fizyczny
Bibliogr. 55 poz., schem.
Twórcy
  • Zakład Stereochemii Organicznej, Wydział Chemii Uniwersytetu im. Adama Mickiewicza, ul. Uniwersytetu Poznańskiego 8, 61-614 Poznań
Bibliografia
  • [1] J. McMurry, Chemia organiczna, t.4. Wydawnictwo Naukowe PWN, Warszawa, 2013.
  • [2] J. Clayden, N. Greeves, S. Warren, P. Wothers, Organic chemistry, Oxford University Press, USA, 2000.
  • [3] L.G. Wade, Organic chemistry, Pearson Prentice Hall, USA, 2006.
  • [4] O. Achmatowicz, B. Szechner, Podstawowa terminologia stereochemii, Warszawa, 1999.
  • [5] L. Duhamel, J.-C. Plaquevent, Tetrahedron Lett., 1980, 21, 2521.
  • [6] J.K. Whitesell, S.W. Felman, J. Org. Chem., 1980, 45, 755.
  • [7] N.S. Simpkins, J. Chem. Soc., Chem. Commun., 1986, 1, 88.
  • [8] C.M. Cain, R.P.C. Cousins, G. Coumbarides, N.S. Simpkins, Tetrahedron, 1990, 46, 523.
  • [9] P. J. Cox, N.S. Simpkins, Tetrahedron: Asymmetry, 1991, 2, 1.
  • [10] R. Shirai, M. Tanaka, K. Koga, J. Am. Chem. Soc., 1986, 108, 543.
  • [11] K. Koga, Journal of Synthetic Organic Chemistry, Japan, 1990, 48, 463.
  • [12] K.W. Henderson, W.J. Kerr, Chem. Eur. J., 2001,7, 3431.
  • [13] J.D. Anderson, P. García García, D. Hayes, K.W. Henderson, W.J. Kerr, J.H. Moir, K.P. Fondekar, Tetrahedron Lett., 2001, 42, 7111.
  • [14] K.W. Henderson, W.J. Kerr, J.H. Moir, Tetrahedron, 2002, 58, 4573.
  • [15] M.J. Bassindale, J.J. Crawford, K.W. Henderson, W. J. Kerr, Tetrahedron Lett., 2004, 45, 4175.
  • [16] D. Vargová, I. Némethová, К. Plevová, R. Sebesta, ACS Catalysis, 2019, 9, 3104.
  • [17] T. Honda, N. Kimura, M. Tsubuki, Tetrahedron: Asymmetry, 1993, 4, 1475.
  • [18] M. Braun, B. Meyer, B.F. de Lacroix, Eur. J. Org. Chem., 2002, 1424.
  • [19] M. Majewski, G.-Z. Zheng, Synlett, 1991, 3, 173.
  • [20] T. Honda, N. Kimura, Org. Lett., 2002, 4, 4567.
  • [21] A. Gambacorta, D. Tofani, P. Lupattelli, A. Tafi, Tetrahedron Lett., 2002, 43, 2195.
  • [22] R.E. Ireland, R.H. Mueller, A.K. Willard, J. Am. Chem. Soc., 1976, 98, 2868.
  • [23] P. O’Brien, J. Chem. Soc., Perkin Trans. 1,1998,1439.
  • [24] A. Harrison-Marchand, J. Maddaluno, Lithium Compounds in Organic Synthesis, Wiley-VCH, 2014.
  • [25] E.J. Corey, A.W. Gross, Tetrahedron Lett., 1984, 25, 495.
  • [26] B.J. Bunn, N.S. Simpkins, Z. Spavold, M.J. Crimmin, J. Chem. Soc., Perkin Trans. 1, 1993, 3113.
  • [27] K. Koga, Pure & Appl. Chem., 1994, 66, 1487.
  • [28] K. Sugasawa, M. Shindo, H. Noguchi, K. Koga, Tetrahedron Lett., 1996, 37, 7377.
  • [29] M. Majewski, R. Lazny, P. Nowak, Tetrahedron Lett., 1995, 36, 5465.
  • [30] M. Majewski, F. Wang, Tetrahedron, 2002, 58, 4567.
  • [31] M. Majewski, A. Ulaczyk, F. Wang, Tetrahedron Lett. , 1999, 40, 8155.
  • [32] M. Majewski, A. Ulaczyk-Lesanko, F. Wang, Can. J. Chem., 2006, 84, 251.
  • [33] L. Ma, P. G. Williard, Tetrahedron: Asymm., 2006, 17, 3021.
  • [34] O. Equey, A. Alexakis, Tetrahedron:Asymm., 2004, 15, 1069.
  • [35] J. P. Tierney, A. Alexakis, P. Mangeney, Tetrahedron: Asymm. 1991, 8, 1019.
  • [36] T. Yamashita, D. Sato, T. Kiyoto, A. Kumar, K. Koga, Tetrahedron Lett., 1996, 37, 8195.
  • [31] T. Yamashita, D. Sato, T. Kiyoto, A. Kumar, K. Koga, Tetrahedron, 1991, 53, 16981.
  • [38] H. Wild, L. Born, Angew. Chem. Int. Ed. Engl., 1991, 30, 1685.
  • [39] A.B. Smith, E.G. Nolen, R. Shirai, F.R. Blase, M. Ohta, N. Chida, R.A. Hartz, D.M. Fitch, W.M. Clark, P.A. Sprengeler, J. Org. Chem., 1995, 60, 1831.
  • [40] T. Honda, F. Ishikawa, K. Kanai, S. Sato, D. Kato, H. Tominaga, Heterocycles, 1996, 42, 109.
  • [41] K.W. Hunt, P.A. Grieco, Organic Lett., 2002, 4, 245.
  • [42] J.-C. Poupon, E. Demont, J. Prunet, J.-P. Férézou, J. Org. Chem., 2003, 68, 4100.
  • [43] D.I. MaGee, D.E. Shannon, Can. J. Chem., 2004, 82, 333.
  • [44] D.M. Hodgson, J.-M. Galano, Organic Lett., 2005, 7, 2221.
  • [45] C.A. Carson, M.A. Kerr, Organic Lett., 2009, 11, 111.
  • [46] J. Leonard, D. Ouali, S.K. Rahman, Tetrahedron Lett., 1990, 31, 139.
  • [41] H. Wild, J. Org. Chem., 1994, 59, 2148.
  • [48] M. Nowakowski, H.M.R. Hoffmann, Tetrahedron Lett., 1991, 38, 1001.
  • [49] H. Abe, T. Tsujino, K. Araki, Y. Takeuchi, T. Harayama, Tetrahedron: Asymmetry, 2002, 13, 1519.
  • [50] V.K. Aggarwal, B. Olofsson, Angew. Chem. Int. Ed., 2005, 44, 5516.
  • [51] M. Lachia, F. Denes, F. Beaufils, P. Renaud, Organic Lett., 2005, 7, 4103.
  • [52] B. Butler, T. Schultz, N.S. Simpkins, Chem. Commun., 2006, 3634.
  • [53] M. Inoue, N. Lee, S. Kasuya, T. Sato, M. Hirama, M. Moriyama, Y. Fukuyama, J. Org. Chem., 2001, 72, 3065.
  • [54] M. Majewski, P. Nowak, J. Org. Chem., 2000, 65, 5152.
  • [55] D. Łowicki, J. Watral, M. Jelecki, W. Bohusz, M. Kwit, Tetrahedron, 2021, 86, 132085.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d11dc73f-1d0d-48b5-9787-0c0cd38bc435
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.