PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Enhanced evaporation of the condensate droplets within the asymmetrical shock wave zone

Autorzy
Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The present work is concerned with investigation into coupled phenomena occurring in the supersonic section of the de Laval nozzle, characterized by the presence of shock the flow of condensing steam. The numerical simulations results were compared with the experiment carried out by Dykas et al. in 2013 on the half arc nozzles. The present work includes simulations results of oscillation frequency of the shock wave and conditions for the enhancement evaporation of condensate within the asymmetrical shock wave. Novelty of our approach lies on modeling both the moment of initiation of a phase transition, as well as the moment of its reverse progress – called here revaporization of the condensate phase.
Rocznik
Tom
Strony
119--130
Opis fizyczny
Bibliogr. 13 poz., rys.
Twórcy
autor
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
  • Conjoint Doctoral School at the Faculty of Mechanical Engineering, Gdańsk University of Technology, Narutowicza 11/12, 80-233 Gdańsk, Poland
autor
  • Energy Conversion Department, The Szewalski Institute of Fluid-Flow Machinery of the Polish Academy of Sciences, Fiszera 14, 80-231 Gdańsk, Poland
Bibliografia
  • [1] Biliński Z., Badur J.: A thermodynamically consistent relaxation model for a turbulent, binary mixture undergoing phase transition. J. Non–Equilibrium Thermodyn. 28(2003), 145–172.
  • [2] Kornet S., Badur J.: An asymmetrical λ-foot of condensing steam flow in the IFFM PAS nozzle. J. Phys.: Conf. Ser. 530(2014), 012018, 1–8.
  • [3] Dykas S., Majkut M., Smołka K., Strozin M.: Research on steam condensation flow in nozzle with shock wave. J. Power Technol. 93(2013), 288–294.
  • [4] Puzyrewski R.: Theoretical and experimental studies on formation and growth of water drops in LP steam turbines. Transactions IFFM 42– 44(1969), 289–303.
  • [5] Karcz M., Zakrzewski W., Lemański M., Badur J.: Issues of 3D modeling the spontaneous condensation part of the low pressure steam turbine of 200 MW. In: Proc. 10th Conf. of Science and Technology ‘Thermal Power Upgrades-Operation-Maintenance’ , Słok, near Bełchatów 2001, 253–262 (in Polish).
  • [6] Kornet S., Badur J.: ‘Eulerian – Eulerian’ versus ‘Eulerian – La- grangean’ models of condensation. Logistyka 4(2014), 4463–4473.
  • [7] Zakrzewski W., Karcz M., Kornet S.: Estimatiom of the steam condensation flow via CFD methods. Transactions IFFM 112(2012), 1–12.
  • [8] Zakrzewski W., Nastałek L., Badur J., Jesionek K., Straś K., Masłyk M.: Modeling of the Baumann turbine stage operations, Part I. Flow. Arch. Energ. 32(2012), 2, 24–23.
  • [9] Banaszkiewicz M., Badur J. : Gradient theory for the description of interfacial phenomena. TASK Quart. 4(2000), 213–290.
  • [10] Namieśnik K., Doerffer P.: Numerical simulation of shock wave patterns in supersonic divergent symmetric nozzles. TASK Quart. 9(2004), 53–63.
  • [11] Bourgoing A., Reijasse Ph.: Experimental analysis of unsteady separated flows in a supersonic planar nozzle flow. Shock Waves 24(2006), 251–258.
  • [12] Sellam M., Fournier G., Chpoun A., Reijasse Ph.: Numerical investigation of overexpanded nozzle flow. Shock Wave 24(2014), 33–39.
  • [13] Verma S. B., Manisanka C.: Origin of flow asymmetry in planar nozzle with separation. Shock Wave 24(2014), 191–209.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d11c77e9-7a5b-467a-8c5b-8e9934b0f39d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.