PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Ocean Fronts detection over the Bay of Bengal using changepoint algorithms : A non-parametric approach.

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Oceanic fronts are regions over the oceans where a significant change in the characteristics of the water masses is observed. Advanced Very High Resolution Radiometer (AVHRR) satellite imagery over the Bay of Bengal shows regions that are populated by frontal structures. Over the Bay of Bengal, some of the strongest gradients in temperature and salinity are observed. In recent years, there has been a tremendous growth in the availability of satellite imagery and the necessity of automated fast detection of the frontal features is needed for services like potential fishing zones over open oceans. In this article, an algorithm to infer oceanic fronts over the Bay of Bengal is described using changepoint analysis. The changepoint algorithm is combined in a novel way with a contextual median filter to detect frontal features in AVHRR imagery. The changepoint analysis is a non-parametric technique that does not put thresholds on the gradients of brightness temperatures of the satellite imagery. In the open oceans, the gradients of temperature and salinity are not sharp and changepoint analysis is found to be a useful complementary technique to the existing front detecting methods when combined with contextual median filters.
Czasopismo
Rocznik
Strony
438--447
Opis fizyczny
Bibliogr. 39 poz., rys.
Twórcy
  • Indian National Centre for Ocean Information Services, Hyderabad, India
  • National Centre for Polar and Ocean Research, Vasco-da-Gama, India
  • Jawaharlal Nehru Technological University, Hyderabad, India
  • Indian National Centre for Ocean Information Services, Hyderabad, India
  • Indian National Centre for Ocean Information Services, Hyderabad, India
autor
  • Indian National Centre for Ocean Information Services, Hyderabad, India
Bibliografia
  • [1] Belkin, I. M., O’Reilly, J. E., 2009. An algorithm for oceanic front detection in chlorophyll and SST satellite imagery. J. Marine Syst. 78 (3), 319-326. https://doi.org/10.1016/j.jmarsys.2008.11.018.
  • [2] Canny, J., 1986. A computational approach to edge detection. IEEE T. Pattern Anal. PAMI 8 (6), 679-698. https://doi.org/10.1109/TPAMI.1986.4767851.
  • [3] Cayula, J.-F., Cornillon, P., 1992. Edge detection algorithm for SST images. J. Atmos. Ocean. Tech. 9 (1), 67-80 https://doi.org/10.1175/1520-0426(1992)009%3C0067:EDAFSI%3E2.0.CO;2.
  • [4] Cayula, J.-F., Cornillon, P., 1995. Multi-image edge detection for SST images. J. Atmos. Ocean. Tech. 12 (4), 821-829. https://doi.org/10.1175/1520-0426(1995)012<0821:MIEDFS>2.0.CO;2.
  • [5] Chen, J., Gupta, A. K., 2011. Parametric statistical change point analysis: with applications to genetics, medicine, and finance. Springer Science & Business Media.
  • [6] Eladawy, A., Nadaoka, K., Negm, A., Abdel-Fattah, S., Hanafy, M., Shaltout, M., 2017. Characterization of the northern Red Sea’s oceanic features with remote sensing data and outputs from a global circulation model. Oceanologia 59 (3), 213-237. https://doi.org/10.1016/j.oceano.2017.01.002.
  • [7] Gonzalez, R. C., Woods, R. E., Eddins, S. L., 2004. Digital image processing using MATLAB, 2nd edn. Pearson Education India.
  • [8] Gurova, E., Lehmann, A., Ivanov, A., 2013. Upwelling dynamics in the Baltic Sea studied by a combined SAR/infrared satellite data and circulation model analysis. Oceanologia 55 (3), 687-707. https://doi.org/10.5697/oc.55-3.687.
  • [9] Halliwell Jr, G. R., Mooers, C. N. K., 1979. The space-time structure and variability of the shelf water-slope water and Gulf Stream surface temperature fronts and associated warm-core eddies. J. Geophys. Res. Ocean 84 (C12), 7707-7725. https://doi.org/10.1029/JC084iC12p07707.
  • [10] Holland, J. A., Yan, X.-H., 1992. Ocean thermal feature recognition, discrimination, and tracking using infrared satellite imagery. IEEE T. Geosci. Remote Sens. 30 (5), 1046-1053. https://doi.org/10.1109/36.175339.
  • [11] Holyer, R. J., Peckinpaugh, S. H., 1989. Edge detection applied to satellite imagery of the oceans. IEEE T. Geosci. Remote 27 (1), 46-56. https://doi.org/10.1109/36.20274.
  • [12] Hopkins, J., Challenor, P., Shaw, A. G. P., 2010. A new Statistical Modeling approach to ocean front detection from SST satellite images. J. Atmos. Ocean. Tech. 27 (1), 173-191. https://doi.org/10.1175/2009JTECHO684.1.
  • [13] Horváth, L., 1993. The maximum likelihood method for testing changes in the parameters of normal observations. Ann. Stat. 21 (2), 671-680.
  • [14] Jackson, B., Scargle, J. D., Barnes, D., Arabhi, S., Alt, A., Gioumousis, P., Gwin, E., Sangtrakulcharoen, P., Tan, L., Tsai, T. T., 2005. An algorithm for optimal partitioning of data on an interval. IEEE Signal Proc. Let. 12 (2), 105-108. https://doi.org/10.1109/LSP.2001.838216.
  • [15] Killick, R., Eckley, I., 2014. changepoint: An R package for changepoint analysis. J. Stat. Softw. 58 (3), 1-19. https://doi.org/10.18637/jss.v058.i03.
  • [16] Kirsch, R. A., 1971. Computer determination of the constituent structure of biological images. Comput. Biomed. Res. 4 (3), 315-328. https://doi.org/10.1016/0010-4809(71)90034-6.
  • [17] Krężel, A., Ostrowski, M., Szymelfenig, M., 2005. Sea surface temperature distribution during upwelling along the Polish Baltic coast. Oceanologia 47 (4), 415-432.
  • [18] Krishnamurthy, S., Iyengar, S. S., Holyer, R. J., Lybanon, M., 1994. Histogram-based morphological edge detector. IEEE T. Geosci. Remote 32 (4), 759-767. https://doi.org/10.1109/36.298005.
  • [19] Lehmann, A., Myrberg, K., Höflich, K., 2012. A statistical approach to coastal upwelling in the Baltic Sea based on the analysis of satellite data for 1990-2009. Oceanologia 54 (3), 369-393. https://doi.org/10.5697/oc.54-3.369.
  • [20] Lorbacher, K., Dommenget, D., Niiler, P. P., Köhl, A., 2006. Ocean mixed layer depth: A subsurface proxy of ocean-atmosphere variability. J. Geophys. Res. Ocean 111 (C07010). https://doi.org/10.1029/2003JC002157.
  • [21] Maidstone, R., Hocking, T., Rigaill, G., Fearnhead, P., 2017. On optimal multiple changepoint algorithms for large data. Stat. Comput. 27, 519-533. https://doi.org/10.1007/s11222-016-9636-3.
  • [22] McWilliams, J. C., 1985. Submesoscale, coherent vortices in the ocean. Rev. Geophys. 23 (2), 165-182. https://doi.org/10.1029/RG023i002p00165.
  • [23] Nadernejad, E., Sharifzadeh, S., Hassanpour, H., 2008. Edge detection techniques: evaluations and comparisons. Appl. Math. Sci. 2 (31), 1507-1520.
  • [24] Oram, J. J., McWilliams, J. C., Stolzenbach, K. D., 2008. Gradient-based edge detection and feature classification of sea-surface images of the Southern California Bight. Remote Sens. Environ. 112 (5), 2397-2415. https://doi.org/10.1016/j.rse.2007.11.010.
  • [25] Page, E. S., 1954. Continuous inspection schemes. Biometrika 41 (1/2), 100-115. https://doi.org/10.2307/2333009.
  • [26] Petrou, M. M. P., Petrou, C., 2010. Image processing: the fundamentals. 2nd edn., John Wiley & Sons.
  • [27] Qiu, B., Nakano, T., Chen, S., Klein, P., 2017. Submesoscale transition from geostrophic flows to internal waves in the northwestern Pacific upper ocean. Nat. Commun. 8 (1), 1-10. https://doi.org/10.1038/ncomms14055.
  • [28] Roberts, L., 1965. Machine perception of 3-D solids, optical and electro-optical information processing. MIT press, Cambridge (MA).
  • [29] Robinson, G. S., 1977. Edge detection by compass gradient masks. Compute. Vision Graph. 6 (5), 492-501. https://doi.org/10.1016/S0146-664X(77)80024-5.
  • [30] Schott, F. A., McCreary Jr., J. P., 2001. The monsoon circulation of the Indian Ocean. Prog. Oceanogr. 51 (1), 1-123. https://doi.org/10.1016/S0079-6611(01)00083-0.
  • [31] Simhadri, K. K., Iyengar, S. S., Holyer, R. J., Lybanon, M., Zachary, J. M., 1998. Wavelet-based feature extraction from oceanographic images. IEEE T. Geosci. Remote 36 (3), 767-778. https://doi.org/10.1109/36.673670.
  • [32] Simpson, J. J., 1990. On the accurate detection and enhancement of oceanic features observed in satellite data. Remote Sens. Environ. 33 (1), 17-33. https://doi.org/10.1016/0034-4257(90)90052-N.
  • [33] Stramska, M., Aniskiewicz, P., 2019. Satellite remote sensing signatures of the Major Baltic Inflows. Remote Sens. Basel. 11 (8), 954. https://doi.org/10.3390/rs11080954.
  • [34] Telesca, L., Pierini, J. O., Lovallo, M., Santamarıá-del-Angel, E., 2018. Spatio-temporal variability in the Brazil-Malvinas Confluence Zone (BMCZ), based on spectroradiometric MODIS-AQUA chlorophyll-a observations. Oceanologia 60 (1), 76-85. https://doi.org/10.1016/j.oceano.2017.08.002.
  • [35] Vinayachandran, P. N., Shankar, D., Vernekar, S., Sandeep, K. K., Amol, P., Neema, C. P., Chatterjee, A., 2013. A summer monsoon pump to keep the Bay of Bengal salty. Geophys. Res. Lett. 40 (9), 1777-1782. https://doi.org/10.1002/grl.50274.
  • [36] Wang, W., Zhou, C., Shao, Q., Mulla, D. J., 2010. Remote sensing of sea surface temperature and chlorophyll-a: implications for squid fisheries in the north-west Pacific Ocean. Int. J. Remote Sens. 31 (1718), 4515-4530. https://doi.org/10.1080/01431161.2010.485139.
  • [37] Williams, R. G., Follows, M. J., 2011. Ocean dynamics and the carbon cycle: Principles and mechanisms. Cambridge University Press.
  • [38] Yu, F., Sun, W., Li, J., Zhao, Y., Zhang, Y., Chen, G., 2017. An improved Otsu method for oil spill detection from SAR images. Oceanologia 59 (3), 311-317. https://doi.org/10.1016/j.oceano.2017.03.005.
  • [39] Zhang, L., Dong, W., Zhang, D., Shi, G., 2010. Two-stage image denoising by principal component analysis with local pixel grouping. Pattern Recogn. 43 (4), 1531-1549. https://doi.org/10.1016/j.patcog.2009.09.023.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d116a798-fe53-41d6-9888-665b8dacad08
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.