PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Infrastructure for 3D Modeling of Historical Fountains in Istanbul with GIS-Based Procedural Approach

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Along with the concepts of “smart city” and “digital twin,” the 3D (threedimensional) city models have started to be used as a basis for many studies that have been carried out in recent years. The most important and basic components of 3D city models are the structures that are located in the cities. However, some small structures of historical importance are within the category of the buildings in a city but are often not as large as a building. Historical fountains are some of these structures. For this reason, modeling with existing 3D city model-production methods is a little more complicated and requires local measurements and detailed modeling studies. As a result, this study has designed a database scheme design in which the historical city wall fountains in Istanbul can be stored in a spatial database and modeled in three dimensions (with procedural modeling when necessary). In addition, the conveniences that this infrastructure will provide in the production of 3D structure models and some difficulties that were encountered during these studies are also discussed and examined.
Rocznik
Strony
51--72
Opis fizyczny
Bibliogr. 45 poz., fot., tab., wykr.
Twórcy
  • Istanbul Technical University, Graduate School, Doctoral Program of Geomatics Engineering, Istanbul, Türkiye
  • Istanbul Technical University, Faculty of Civil Engineering, Department of Geomatics Engineering, Istanbul, Türkiye
Bibliografia
  • Erving A., Rönnholm P., Nuikka M.: Data integration from different sources to create 3D virtual model. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII/5-W1, 2009, pp. 1–7. https://www.isprs.org/proceedings/xxxviii/5-w1/pdf/erving_etal.pdf.
  • Moser J., Albrecht F., Kosar B.: Beyond visualisation – 3D GIS analyses for virtual city models. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-4/W15, 2010, pp. 143–146. https://www.isprs.org/proceedings/xxxviii/4-w15/Paper_ISPRS/Poster/14_3DGeoInfo2010_147_Moser_3D_GIS_Analyses.pdf
  • Basir A., Lines T., Pereira M.F.: Scalable 3D mapping of cities using computer vision and signals of opportunity. International Journal of Geographical Information Science, vol. 37(7), 2023, pp. 1470–1495. https://doi.org/10.1080/13658816.2023.2191674.
  • Labetski A., Vitalis S., Biljecki F., Ohori K.A., Stoter J.: 3D building metrics for urban morphology. International Journal of Geographical Information Science, vol. 37(1), 2023, pp. 36–67. https://doi.org/10.1080/13658816.2022.2103818.
  • Aliaga D.G.: 3D Design and modeling of smart cities from a computer graphics perspective. International Scholarly Research Notices, vol. 2012, 2012, 728913, pp. 1–19. https://doi.org/10.5402/2012/728913.
  • Sengul A.: Extracting semantic building models from aerial stereo images and conversion to CityGML. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIX-B3, 2012, pp. 321–324. https://doi.org/10.5194/isprsarchives-XXXIX-B3-321-2012.
  • Prandi F., De Amicis R., Piffer S., Soave M., Cadzow S., Gonzalez Boix E., D’Hondt E.: Using CityGML to deploy smart-city services for urban ecosystems. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XL-4/W1, 2013, pp. 87–92. https://doi.org/10.5194/isprsarchives-XL-4-W1-87-2013.
  • Prandi F., Soave M., Devigili F., Andreolli M., De Amicis R.: Services oriented smart city platform based on 3D city model visualization. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. II-4-59, 2014, pp. 59–64. https://doi.org/10.5194/isprsannals-II-4-59-2014.
  • Biljecki F., Ledoux H., Stoter J.E.: Generation of multi-lod 3D city models in CityGML with the procedural modelling engine Random3DCity. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. III-4-W1-51, 2016, pp. 51–59. https://doi.org/10.5194/isprs-annals-III-4-W1-51-2016.
  • Seipel S., Lim N.J.: Color map design for visualization in flood risk assessment. International Journal of Geographical Information Science, vol. 31(11), 2017, pp. 2286–2309. https://doi.org/10.1080/13658816.2017.1349318.
  • Yastıklı N., Çetin Z., Üçok U., Koçdemir K.H.: Fotogrametrik harita ve LiDAR verileri ile 3B kent modeli üretimi [conference paper ]. TMMOB Harita ve Kadastro Mühendisleri Odası, 16. Türkiye Harita Bilimsel ve Teknik Kurultayı, 3–6 Mayıs 2017, Ankara. https://obs.hkmo.org.tr/show-media/resimler/ekler/1f357cb2416f040_ek.pdf.
  • Slade J.: Automatic semantic and geometric enrichment of CityGML 3D building models of varying architectural styles with HOG-based template matching. Cardiff University, Cardiff 2018 [PhD thesis]. https://orca.cardiff.ac.uk/id/eprint/111334/1/2018sladejdphd.pdf.
  • Cheong L., Kinkeldey C., Burfurd I., Bleisch S., Duckham M.: Evaluating the impact of visualization of risk upon emergency route-planning. International Journal of Geographical Information Science, vol. 34(5), 2020, pp. 1022–1050. https://doi.org/10.1080/13658816.2019.1701677.
  • Kang M., Liu Y., Wang M., Li L., Weng M.: A random forest classifier with cost-sensitive learning to extract urban landmarks from an imbalanced dataset. International Journal of Geographical Information Science, vol. 36(3), 2022, pp. 496–513. https://doi.org/10.1080/13658816.2021.1977814.
  • Saran S., Oberai K., Wate P., Konde A., Dutta A., Kumar K., Kumar A.S.: Utilities of virtual 3D city models based on CityGML: Various use cases. Journal of the Indian Society of Remote Sensing, vol. 46(6), 2018, pp. 957–972. https://doi.org/10.1007/s12524-018-0755-5.
  • Eudave R.R., Ferreira T.M.: On the suitability of a unified GIS-BIM-HBIM framework for cataloguing and assessing vulnerability in Historic Urban Landscapes: A critical review. International Journal of Geographical Information Science, vol. 35(10), 2021, pp. 2047–2077. https://doi.org/10.1080/13658816.2020.1844208.
  • Lei B., Stouffs R., Biljecki F.: Assessing and benchmarking 3D city models. International Journal of Geographical Information Science, vol. 37(4), 2023, pp. 788–809. https://doi.org/10.1080/13658816.2022.2140808.
  • Biljecki F.: Level of detail in 3D city models. Delft University of Technology, Delft 2017 [PhD thesis]. https://doi.org/10.4233/uuid:f12931b7-5113-47ef-bfd4-688aae3be248.
  • Diakité A.A., Zlatanova S.: Spatial subdivision of complex indoor environments for 3D indoor navigation. International Journal of Geographical Information Science, vol. 32(2), 2018, pp. 213–235. https://doi.org/10.1080/13658816.2017.1376066.
  • Musialski P., Wonka P., Aliaga D., Wimmer M., Van Gool L., Purgathofer W.: A survey of urban reconstruction. Computer Graphics Forum, vol. 32(6), 2013, pp. 146–177. https://doi.org/10.1111/cgf.12077.
  • Flamanc D., Maillet G., Jibrini H.: 3D city models an operational approach using aerial images and cadastral maps. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXIV-3-W8, 2003, pp. 53–58. https://www.isprs.org/proceedings/XXXIV/3-W8/papers/pia03_s2p2.pdf.
  • Prieto I., Izkara J.L., Béjar R.: A continuous deployment-based approach for the collaborative creation, maintenance, testing and deployment of CityGML models. International Journal of Geographical Information Science, vol. 32(2), 2018, pp. 282–301. https://doi.org/10.1080/13658816.2017.1393543.
  • Nex F., Remondino F.: Automatic roof outlines reconstruction from photogrammetric DSM. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information, vol. I-3, 2012, pp. 257–262. https://doi.org/10.5194/isprsannals-I-3-257-2012.
  • Tarantino E., Figorito B.: Extracting buildings from true color stereo aerial images using a decision making strategy. Remote Sensing, vol. 3(8), 2011, pp. 1553–1567. https://doi.org/10.3390/rs3081553.
  • Kocaman S., Zhang L., Gruen A., Poli D.: 3D city modeling from high-resolution satellite images. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVI-1/W41, 2006, pp. 1–6. https://www.isprs.org/proceedings/XXXVI/1-W41/makaleler/Kocaman_3D_city.pdf.
  • Cura R., Perret J., Paparoditis N.: A state of the art of urban reconstruction street, street network, vegetation, urban feature. 2018. https://doi.org/10.48550/arXiv.1803.04332.
  • Guercke R., Brenner C., Sester M.: Generalization of 3D city models as a service. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXVIII-2/W11, 2009, pp. 1–6. https://www.isprs.org/proceedings/XXXVIII/2-W11/Guercke_Brenner_Sester.pdf.
  • Goetz M.: Towards generating highly detailed 3D CityGML models from OpenStreetMap. International Journal of Geographical Information Science, vol. 27(5), 2013, pp. 845–865. https://doi.org/10.1080/13658816.2012.721552.
  • Simon L.: Procedural reconstruction of buildings: towards large scale automatic 3D modeling of urban environments. École centrale Paris, Paris 2011. https://www.theses.fr/2011ECAP0032.
  • Boeters R., Ohori K.A., Biljecki F., Zlatanova S.: Automatically enhancing CityGML LOD2 models with a corresponding indoor geometry. International Journal of Geographical Information Science, vol. 29(12), 2015, pp. 2248–2268. https://doi.org/10.1080/13658816.2015.1072201.
  • Kumar K., Labetski A., Ledoux H., Stoter J.: An improved LOD framework for the terrains in 3D city models. ISPRS Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. IV-4/W8, 2019, pp. 75–82. https://doi.org/10.5194/isprs-annals-IV-4-W8-75-2019.
  • Ertuğ N. (ed.): İstanbul Tarihi Çeşmeler Külliyatı [vol. 1–3]. İstanbul Su ve Kanalizasyon İdaresi, İstanbul 2006.
  • Karasaka L., Beg A.: Yersel Lazer Tarama Yöntemi ile Farklı Geometrik Yapıdaki Özelliklerin Modellenmesi. Geomatik, vol. 6(1), 2021, pp. 54–60. https://doi.org/10.29128/geomatik.664728.
  • Ulvi A., Yakar M., Yiğit A.Y., Kaya Y.: İHA ve yersel fotogrametrik teknikler kullanılarak aksaray Kızıl Kilise’nin 3 boyutlu nokta bulutu ve modelinin üretilmesi. Geomatik, vol. 5(1), 2020, pp. 19–26. https://doi.org/10.29128/geomatik.560179.
  • Merrell P., Manocha D.: Model synthesis a general procedural modeling algorithm. Transactions on Visualization and Computer Graphics, vol. 17(6), 2011, pp. 715–728. https://doi.org/10.1109/TVCG.2010.112.
  • Weissenberg J.: Inverse procedural modelling and applications. ETH Zürich, Zürich 2014 [PhD thesis]. https://www.varcity.ethz.ch/paper/phd2014_weissenberg_thesis.pdf.
  • Dobraja L.: Procedural 3D modeling and visualization of geotypical Bavarian rural buildings in Esri CityEngine software. Technische Universität München, München 2015 [MSc thesis]. https://cartographymaster.eu/wp-content/theses/2015_Dobraja_Presentation.pdf.
  • Adão T., Magalhães L., Peres E.: Ontologies and procedural modelling. [in:] Adão T., Magalhães L., Peres E., Ontology-based Procedural Modelling of Traversable Buildings Composed by Arbitrary Shapes, SpringerBriefs in Computer Science, Springer, Cham 2016, pp. 11–35. https://doi.org/10.1007/978-3-319-42372-2_2.
  • Lin Y., Cai Y., Gong Y., Kang M., Li L.: Extracting urban landmarks from geographical datasets using a random forests classifier. International Journal of Geographical Information Science, vol. 33(12), 2019, pp. 2406–2423. https://doi.org/10.1080/13658816.2019.1620238.
  • Tekavec J., Lisec A., Rodrigues E.: Simulating large-scale 3D cadastral dataset using procedural modelling. ISPRS International Journal of Geo-Information, vol. 9(10), 2019, 598. https://doi.org/10.3390/ijgi9100598.
  • Ennafii O., Le Bris A., Lafarge F., Mallet C.: Scalable evaluation of 3D city models. [in:] IGARSS 2019 – 2019 IEEE International Geoscience and Remote Sensing Symposium: Proceedings, July 28–August 2, 2019, Yokohama, Japan, IEEE, Piscataway 2019, pp. 3400–3403. https://doi.org/10.1109/IGARSS.2019.8899337.
  • Tunc E., Karsli F., Ayhan E.: 3D city reconstruction by different technologies to manage and reorganize the current situation. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences, vol. XXXV-B4, 2004, pp. 443–448. https://www.isprs.org/proceedings/XXXV/congress/comm4/papers/388.pdf.
  • Ma R., Chen J., Yang C., Li X.: OSMsc: a framework for semantic 3D city modeling using OpenStreetMap. International Journal of Geographical Information Science, vol. 38(1), 2023, pp. 1–26. https://doi.org/10.1080/13658816.2023.2266824.
  • Bayr U.: Quantifying historical landscape change with repeat photography: An accuracy assessment of geospatial data obtained through monoplotting. International Journal of Geographical Information Science, vol. 35(10), 2021, pp. 2026–2046. https://doi.org/10.1080/13658816.2021.1871910.
  • Coğrafi Bilgi Sistemleri Genel Müdürlüğü [Türkiye Directorate General of Geographic Information Systems]. https://cbs.csb.gov.tr/tucbs-i-86080 [access: 15.05.2023].
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d10ad550-1b8a-4858-ab90-124cf374162d
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.