PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Wprowadzenie do 6G. Specyfikacja, technologie, wyzwania

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
EN
Introduction to 6G. Specification, technologies, challenges
Języki publikacji
PL
Abstrakty
PL
W artykule przedstawiono główne założenia nowego standardu komunikacji 6G, którego wdrożenie jest planowane na 2030 rok. Omówiono wizję przyszłej komunikacji 6G, architekturę sieciową, a także pojawiające się technologie bezpośrednio związane ze standardem 6G, takie jak: sztuczna inteligencja, komunikacja terahercowa, optyczna technologia bezprzewodowa, sieci trójwymiarowe, komunikację kwantową oraz bezkomórkową i inne. Przedstawiono wymagania stawiane komunikacji 6G.
EN
The article presents the main assumptions of the new 6G communication standard, scheduled for implementation in 2030. The vision of future 6G communication, network architecture, as well as emerging technologies directly related to the 6G standard, such as: artificial intelligence, terahertz communication, optical wireless technology, three-dimensional networks, quantum and cell-free communication and others, were discussed. The requirements for 6G communication were presented.
Rocznik
Strony
160--164
Opis fizyczny
Bibliogr. 31 poz.
Twórcy
  • Politechnika Śląska, Katedra Metrologii, Elektroniki i Automatyki, ul. Akademicka 10, 44-100 Gliwice
  • Politechnika Śląska, Katedra Metrologii, Elektroniki i Automatyki, ul. Akademicka 10, 44-100 Gliwice
Bibliografia
  • [1] Tataria H., Shafi M., Molisch A. F., Dohler M., Sjöland H.,Tufvesson F., 6G Wireless Systems: Vision, Requirements, Challenges, Insights, and Opportunities, Proceedings of the IEEE, vol. 109, (2021), no. 7, 1166–1199
  • [2] Chen S., Liang Y. C., Sun S., Kang S., Cheng W., Peng M., Vision, requirements, and technology trend of 6G: How to tackle the challenges of system coverage, capacity, user data-rate and movement speed, IEEE Wireless Communications, vol. 27, (2020), no. 2, 218–228
  • [3] Zhang Z. et al., 6G wireless networks: Vision requirements architecture and key technologies, IEEE Veh. Technol. Mag., vol. 14, (2019), no. 3, 28-41
  • [4] Giordani M., Polese M., Mezzavilla M., Rangan S. Zorzi M., Toward 6G networks: Use cases and technologies, IEEE Commun. Mag., vol. 58, (2020), no. 3, 55-61
  • [5] David K., Berndt H., 6G vision and requirements: is there any need for beyond 5G?, IEEE Vehicular Technology Magazine, vol. 13, (2018), no. 3, 72-80
  • [6] Nawaz S. J., Sharma S. K., Wyne S., Patwary M. N., Asaduzzaman M., Quantum machine learning for 6G communication networks: state-of-the-art and vision for the future, IEEE Access, (2019), vol. 7, 46317-46350
  • [7] Letaief K. B., Chen W., Shi Y., Zhang J. Zhang Y. J. A., The roadmap to 6G: AI empowered wireless networks, IEEE Commun. Mag., vol. 57, (2019), no. 8, 84-90
  • [8] Gui G., Liu M., Tang F., Kato N. Adachi F., 6G: Opening new horizons for integration of comfort security and intelligence, IEEE Wireless Commun., vol. 27, (2020), no. 5, 126-132
  • [9] Li B., Fei Z., Zhang Y., UAV communications for 5G and beyond: recent advances and future trends, IEEE Internet of Things Journal, vol. 6, (2019), no. 2, 2241-2263
  • [10] Jafri S. R. A. et al, Wireless brain computer interface for smart home and medical system, Wireless Personal Communications, vol. 106, (2019), no. 4, 2163-2177
  • [11] Chowdhury M. Z., Hossan M. T., Jang Y. M., Interference management based on RT/nRT traffic classification for FFR-aided small cell/macrocell heterogeneous networks, IEEE Access, vol. 6, (2018), 31340-31358
  • [12] Zadid A. S. M., Chowdhury M. Z., Jang Y. M., Game-based approach for QoS provisioning and interference management in heterogeneous networks, IEEE Access, (2018), vol. 6, 10208–10220
  • [13] Mahbas A. J., Zhu H., Wang J., Impact of small cells overlapping on mobility management, IEEE Transactions on Wireless Communications, vol. 18, (2019), no. 2, 1054-1068
  • [14] Zhou T., Jiang N., Liu Z., Li C., Joint cell activation and selection for green communications in ultra-dense heterogeneous networks, IEEE Access, vol. 6, (2018), 1894-1904
  • [15] Andreev S., Petrov V., Dohler M., Yanikomeroglu H., Future of ultra-dense networks beyond 5G: harnessing heterogeneous moving cells, IEEE Communications Magazine, vol. 57, (2019), no. 6, 86-92
  • [16] Chowdhury M. Z., Hossan M. T., Islam A., Jang Y., M comparative survey of optical wireless technologies: architectures and applications, IEEE Access, vol. 6, (2018), 9819–10220
  • [17] Chowdhury M. Z., Hossan M. T., Hasan M. K., Jang Y. M., Integrated RF/optical wireless networks for improving QoS in indoor and transportation applications, Wireless Personal Communications, vol. 107, (2019), no. 3, 1401-1430
  • [18] Hossan M. T., Chowdhury M. Z., Shahjalal M., Jang Y. M., Human bond communication with head-mounted displays: scope, challenges, solutions, and applications, IEEE Communications Magazine, vol. 57, (2019), no. 2, 26-32
  • [19] Gu Z., Zhang J., Ji Y., Bai L., Sun X., Network topology reconfiguration for FSO-based fronthaul/backhaul in 5G+ wireless networks, IEEE Access, vol. 6, (2018), 69426-69437
  • [20] Bag B., Das A., Ansari I. S., Prokeš A., Bose C., Chandra A., Performance analysis of hybrid FSO systems using FSO/RF-FSO link Draft adaptation, IEEE Photonics Journal, vol. 10, (2018), no. 3, 1-17
  • [21] Attarifar M., Abbasfar A., Lozano A., Modified conjugate beamforming for cell-free massive MIMO, IEEE Wireless Communications Letters, vol. 8, (2019), no. 2, 616-619
  • [22] Henry R., Herzberg A., Kate A., Blockchain access privacy:challenges and directions, IEEE Security & Privacy, vol. 16, (2018), no. 4, 38-45
  • [23] Pan C., Yi J., Yin C., Yu J. Li X., Joint 3D UAV placement and resource allocation in software-defined cellular networks with wireless backhaul, IEEE Access, vol. 7, (2019), 104279-104293
  • [24] Mozaffari M., Taleb A. Kasgari Z., Saad W., Bennis M., Debbah M., Beyond 5G with UAVs: foundations of a 3D wireless cellular network, IEEE Transactions on Wireless Communications, vol. 18, (2019), no. 1, 357-372
  • [25] Xia Q., Jornetn J. M., Expedited neighbor discovery in directional terahertz communication networks enhanced by antenna side-lobe information, IEEE Transactions on Vehicular Technology, vol. 68, (2019), no. 8, 7804-7814
  • [26] Ankarali Z. E., Peköz B., Arslan H., Flexible radio accessbeyond 5G: a future projection on waveform, numerology, and frame design principles, IEEE Access, vol. 5, (2017), 18295-18309
  • [27] Yang P., Xiao Y., Xiao M., Li S., 6G wireless communications: vision and potential techniques, IEEE Network, vol. 33, (2019), no. 4, 70-75
  • [28] Rappaport T. S. et al., Wireless communications and applications above 100 GHz: opportunities and challenges for 6G and beyond, IEEE Access, vol. 7, (2019), 78729-78757
  • [29] Elliott D., Keen W., Miao L., Recent advances in connectedand automated vehicles, Journal of Traffic and Transportation Engineering, vol. 6, (2019), no. 2, 109-131
  • [30] Nguyen D. C., Ding M., Pathirana P. N., Seneviratne A., Li J., Niyato D., 6G Internet of Things: A Comprehensive Survey, IEEE Internet of Things Journal, vol. 9, (2022), 359–383
  • [31] Krawczyk A., Korzeniewska E., Stańdo J., Właściwości PEM oczęstotliwościach terahercowych w zastosowaniu do technologii 6G, Przegląd Elektrotechniczny, nr 12, (2021)
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d10a837b-1e5d-4c7c-9d72-aa6a8472bb42
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.