PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Influence of Carbon Fibers Addition on Selected Properties of Microwave-Cured Moulding Sand Bonded with BioCo2 Binder

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
It was found that the addition of carbon fibers (CFs) does not affect the crosslinking process in the microwave radiation (800 W, 2.45 GHz) of the BioCo2 binder, which is a water solution of poly(acrylic acid) and dextrin (PAA/D). It has influence on BioCo2 thermal properties. The CFs addition improves the thermostability of a binder and leads to the reduction of gas products quantity generated in the temperature range of 300-1100°C (TG-DTG, Py-GC/MS). Moreover, it causes the emission of harmful decomposition products such as benzene, toluene, xylene and styrene to be registered in a higher temperatures (above 700°C). BioCo2 binder without CFs addition is characterized by the emission of these substances in the lower temperature range. This indicates the positive effect of carbon fibers presence on the amount of released harmful products. The selected technological tests (permeability, friability, bending strength, tensile strength) have shown that the moulding sand with the 0.3 parts by weight carbon fibers addition displays the worst properties. The addition of 0.1 parts by weight of CFs is sufficient to obtain a beneficial effect on the analyzed moulding sands properties. The reduction of harmful substances at the higher temperatures can also be observed.
Rocznik
Strony
152--160
Opis fizyczny
Bibliogr. 21 poz., rys., tab., wykr.
Twórcy
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
autor
  • AGH University of Science and Technology, Faculty of Foundry Engineering, Krakow, Poland
Bibliografia
  • [1] Hofstätter, T., Pedersen, D.B., Tosello, G. & Hansen, H.N. (2017). Applications of fiber-reinforced polymers in additive manufacturing. Procedia CIRP. 66, 312-316. DOI: 10.1016/j.procir.2017.03.171.
  • [2] Tekinalp, H.L., Kunc, V., Velez-garcia, G.M., Duty, Ch.E., Love, L.J., Naskar, A.K., Blue, C.A. & Ozcan, S. (2014). Highly oriented carbon fiber–polymer composites via additive manufacturing. Composites Science and Technology. 105, 144-150. DOI:10.1016/j.compscitech. 2014.10.009.
  • [3] Mayer, P. & Kaczmar, J.W. (2008). Properties and application of carbon and glass fibers. Tworzywa Sztuczne i Chemia. 6, 52-56. (in Polish).
  • [4] Kobets, L.P. & Deev, I.S. (1997). Carbon fibres: structure and mechanical properties. Composites Science and Technology. 57, 1571-1580.
  • [5] Neffe, S. & Stankiewicz, R. (2000). Modified carbon fibres. Przemysł Chemiczny. 79(8), 255-260. (in Polish).
  • [6] Tiwari, S. & Bijwe, J. (2014). Surface treatment of carbon fibers - a review. Procedia Technology. 14, 505-512. DOI:10.1016/j.protcy.2014.08.064.
  • [7] Huang, X. (2009). Fabrication and properties of carbon fibers. Materials. 2(4), 2369-2403. DOI:10.3390/ ma2042369.
  • [8] Peter M. & Sherwood, A. (1996). Surface analysis of carbon and carbon fibres for composites. Journal of Electron Spectroscopy and Related Phenomena. 81, 319-342.
  • [9] Tamilarasan, U., Karunamoorthy, L. & Palanikumar, K. (2015). Mechanical properties evaluation of the carbon fibre reinforced aluminium sandwich composites. Materials Research. 18(5), 1029-1037. DOI:10.1590/1516-1439.017215.
  • [10] Hillock, R. & Howard, S. (2014). Utility of carbon fiber implants in orthopedic surgery: literature review. Reconstructive Review. 4(1), 23-32. DOI:10.15438/ rr.v4i1.55.
  • [11] Grabowska, B., Holzter, M., Dańko, R., Górny, M., Bobrowski, A. & Olejnik, E. (2013). New BioCo binders containing biopolymers for foundry industry. Metalurgija. 52(1), 47-50.
  • [12] Grabowska, B. & Holtzer, M. (2008). Application of spectroscopic methods for investigation of the course of poly(sodium acrylate) crosslinking with use of different crosslinking agents. Polimery. 53(7-8), 531-536. (in Polish).
  • [13] Grabowska, B., Sitarz, M., Olejnik, E., Kaczmarska, K. & Tyliszczak, B. (2015). FT-IR and FT-Raman studies of cross-linking processes with Ca2+ ions, glutaraldehyde and microwave radiation for polymer composition of poly(acrylic acid)/sodium salt of carboxymethyl starch – in moulding sands, part II. Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. 151, 27-33. DOI:10.1016/ j.saa.2015.06.0849.
  • [14] Łucarz, M., Grabowska, B. & Grabowski, G. (2014). Determination of parameters of the moulding sand reclamation process, on the thermal analysis base. Archives of Metallurgy and Materials. 59(3), 1023-1027. DOI: 10.2478/amm-2014-0171.
  • [15] Grabowska, B., Kaczmarska, K., Bobrowski, A. & Żymankowska-Kumon, S. (2017). TG-DTG-DSC, FTIR, DRIFT, and Py-GC-MS studies of thermal decomposition for poly(sodium acrylate)/dextrin (PAANa/D) – new binder BioCo3. Journal of Casting & Materials Engineering. 1(1), 27-32. DOI:10.7494/jcme.2017.1.1.27.
  • [16] Wang, Y., Cannon, F.S., Salama, M., Goudzwaard, J. & Furness, J.C. (2007). Characterization of hydrocarbon emissions from green sand foundry core binders by analytical pyrolysis. Environmental Science and Technology. 45(19), 7922-7927.
  • [17] Wang, Y., Cannon, F.S. & Li, X. (2011). Comparative analysis of hazardous air pollutant emissions of casting materials measured in analytical pyrolysis and conventional metal pouring emission tests. Environmental Science and Technology. 45(19), 8529-8535. DOI:10.1021/es2023048.
  • [18] Grabowska, B., Kaczmarska, K., Bobrowski, A., Drozyński, D., Żymankowska-Kumon, S. & Cukrowicz, S. (2017). Polymer binder BioCo3 with silicates and its application to microwave-cured moulding sand. Archives of Foundry Engineering. 17(4), 51-60. DOI:10.1515/afe-2017-0130.
  • [19] Lewandowski, J.L. (1997). Materials for foundry moulds. WN AKAPIT. (in Polish).
  • [20] Chakherlou, T.N., Mahdinia, Y.V. & Akbari, A. (2011). Influence of lustrous carbon defects on the fatigue life of ductile iron castings using lost foam process. Materials and Design. 32(1), 162-169. DOI:10.1016/j.matdes.2010.06.015.
  • [21] Miguel, R.E., Dungan, R.S. & Reeves, J.B. (2014). Mid-infrared spectroscopic analysis of chemically bound metalcasting sands. Journal of Analytical and Applied Pyrolysis. 107, 332-335. DOI:10.1016/j.jaap.2014.02.007.
Uwagi
PL
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1044473-1d95-4b6d-991a-68a5657fc6b8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.