Tytuł artykułu
Autorzy
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
We propose an integral transform, called metamorphism, which allows us to reduce the order of a differential equation. For example, the second-order Helmholtz equation is transformed into a first-order equation, which can be solved by the method of characteristics.
Wydawca
Czasopismo
Rocznik
Tom
Strony
219--227
Opis fizyczny
Bibliogr. 21 poz., il. kolor.
Twórcy
autor
- School of Mathematics, University of Leeds, Leeds LS2 9JT, United Kingdom
Bibliografia
- [1] S. T. Ali, J.-P. Antoine and J.-P. Gazeau, Coherent States, Wavelets, and their Generalizations, 2nd ed., Theoret. Math. Phys., Springer, New York, 2014.
- [2] F. Almalki and V. V. Kisil, Geometric dynamics of a harmonic oscillator, arbitrary minimal uncertainty states and the smallest step 3 nilpotent Lie group, J. Phys. A 52 (2019), no. 2, Article ID 025301.
- [3] F. Almalki and V. V. Kisil, Solving the Schrödinger equation by reduction to a first-order differential operator through a coherent states transform, Phys. Lett. A 384 (2020), no. 16, Article ID 126330.
- [4] T. Alqurashi and V. V. Kisil, Metamorphism as a covariant transform for the SSR group, preprint (2023), https://arxiv.org/abs/2301. 05879.
- [5] V. Bargmann, On a Hilbert space of analytic functions and an associated integral transform, Comm. Pure Appl. Math. 14 (1961), 187-214.
- [6] R. Berndt, Representations of Linear Groups: An Introduction Based on Examples from Physics and Number Theory, Vieweg, Wiesbaden, 2007.
- [7] M. J. Colbrook and A. V. Kisil, A Mathieu function boundary spectral method for scattering by multiple variable poro-elastic plates, with applications to metamaterials and acoustics, Proc. A. 476 (2020), no. 2241, Article ID 20200184.
- [8] A. Córdoba and C. Fefferman, Wave packets and Fourier integral operators, Comm. Partial Differential Equations 3 (1978), no. 11, 979-1005.
- [9] G. B. Folland, Harmonic Analysis in Phase Space, Ann. of Math. Stud. 122, Princeton University, Princeton, 1989.
- [10] V. V. Kisil, Symbolic calculation for covariant transform on the SSR group, Technical report, 2021, https://github.com/vvkisil/SSRgroup-computations.
- [11] V. V. Kravchenko and S. M. Sitnik, Some recent developments in the transmutation operator approach, in: Transmutation Operators and Applications, Trends Math., Birkhäuser/Springer, Cham (2020), 3-9.
- [12] W. Miller, Jr., Lie Theory and Special Functions, Math. Sci. Eng. 43, Academic Press, New York, 1968.
- [13] W. Miller, Jr., Symmetry and Separation of Variables, Encyclopedia Math. Appl. 4, Addison-Wesley, Reading, 1977.
- [14] Y. A. Neretin, Lectures on Gaussian Integral Operators and Classical Groups, EMS Ser. Lect. Math., European Mathematical Society, Zürich, 2011.
- [15] V. F. Osipov, Almost-Periodic Functions of Bohr-Fresnel (in Russian), Gosudarstvenny˘ı Universitet, St. Petersburg, 1992.
- [16] S.-C. Pei and J.-J. Ding, Eigenfunctions of the linear canonical transform, in: Linear Canonical Transforms, Springer Ser. Optical Sci. 198, Springer, New York (2016), 81-96.
- [17] A. D. Polyanin and V. E. Nazaikinskii, Handbook of Linear Partial Differential Equations for Engineers and Scientists, 2nd ed., CRC Press, Boca Raton, 2016.
- [18] A. D. Polyanin, V. F. Zaitsev and A. Moussiaux, Handbook of First Order Partial Differential Equations, Diff. Integral Equations Appl. 1, Taylor & Francis, London, 2002.
- [19] I. E. Segal, Mathematical Problems of Relativistic Physics, Lectures Appl. Math. 1960, American Mathematical Society, Providence, 1963.
- [20] N. J. Vilenkin, Special Functions and the Theory of group Representations, Transl. Math. Monogr. 22, American Mathematical Society, Providence, 1968.
- [21] A. H. Zemanian, A generalized Weierstrass transformation, SIAM J. Appl. Math. 15 (1967), 1088-1105.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d1037078-6c52-4f69-a3a9-862baaa18214