PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Product diversification from pomelo peel. Essential oil, Pectin and semi-dried pomelo peel

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Currently, agriculture has shifted to green production, in which the recycling of post-production by-products is a key issue. In the present work, by-products such as pomelos were studied to promote consumption and enhance the value of pomelo. From pomelo material, essential oils extracted from pomelo peels, pectin, and drying pomelo products have been diversifi ed. In the extraction process of essential oils, the hydrodistillation method was applied in conjunction with the response surface method to obtain the optimal conditions of infl uence factors. These essential oils were quantifi ed as well as determined for components by GC-MS. The pectin recognition process was done by immersion method in HCl acid (pH 2) and the drying process was made with a heat pump dryer under the effects of drying temperature, drying time and wind rate. The results of the essential oil products reached the highest (0.88 ±0.006 g) at the material size of 3 mm, the distillation time of 27 min, and the ratio of raw materials/solvents of 1/12 g/mL. The main components found in pomelo peeling essential oils included limonene (71.768%), γ-terponene (12,847%), α-Phellandrene (2.979%), β-myrcene (2.668%), 1R-α-pinene (2,656%), and β-pinene (1,191%). The pectin content was the highest under the temperature of 90 oC, extraction time of 60 min and ratio/solvent ratio of 1:32 g/mL. Under these extraction conditions, 48% of concentrated pectin content was obtained. Surveying conditions for drying white pomelo peels are capable of reversing: refunded drying pomelos are drying heat pumps in the following conditions: 50 oC drying temperature, the drying time of 90 min, and wind rate of 12 m/s. Product with hardness 309.862 N.
Rocznik
Strony
17--25
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Faculty of Chemical Engineering and Food Technology, Nong Lam University, Thu Duc District, Ho Chi Minh City, Vietnam
autor
  • Faculty of Chemical Engineering and Food Technology, Nong Lam University, Thu Duc District, Ho Chi Minh City, Vietnam
  • Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
  • Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
autor
  • Institute of Environmental Technology and Sustainable Development, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
  • Faculty of Environmental and Food Engineering, Nguyen Tat Thanh University, Ho Chi Minh City, Vietnam
autor
  • Faculty of Chemical Engineering and Food Technology, Nong Lam University, Thu Duc District, Ho Chi Minh City, Vietnam
Bibliografia
  • 1. Uysal, B., Sozmen, F., Aktas, O., Oksal, B.S. & Kose, E.O. 2011. Essential Oil Composition and Antibacterial Activity of the Grapefruit (Citrus Paradisi. L.) Peel Essential Oils Obtained by Solvent-Free Microwave Extraction: Comparison with Hydrodistillation. Internat. J. Food Sci. Technol., 46, 1455–1461, DOI: 10.1111/j.1365-2621.2011.02640.x.
  • 2. Phat, D.T., Tuyen, K.C., Phong, H.X. & Truc, T.T. 2020. Extraction Process Optimization and Compositional Determination of the Es-Sential Oil from Pomelo (Citrus Grandis L.) Grown in Tien Giang Province, Vietnam. Nat. Volat. Essent. Oils, DOI: 10.37929/nveo.780505.
  • 3. Tran, T.H., Dao, T.P., Ngo, Q.C.T., Bach, L.G. & Huynh, X.P. 2020. Comparative Evaluation of the Antibacterial Activities of the Essential Oils of Citrus Grandis (L.) Osbeck Obtained by Hydrodistillation and Microwave Assisted Extraction Methods. IOP Conf. Ser.: Mater. Sci. Eng., DOI: 10.1088/1757-899X/991/1/012010.
  • 4. Dao, T.P., Tran, T.H., Nguyen, D.T., Nguyen, D.C., Nguyen, D.H., Hong, Le, N.T., Sy, D.T., Thanh Huong, N.T. & Minh, B.L. 2019. Application of Response Surface Methodology for the Optimization of Essential Oils from Pomelo [Citrus Grandis (L.) Osbeck] Leaves Using Microwave-Assisted Hydrodistillation Method. Asian J. Chem. 31, 1639–1642, DOI: 10.14233/ajchem.2019.21768.
  • 5. Nhi, T.T.Y., Phat, D.T., Quyen, N.N., Cang, M.H., Truc, T.T., Bach, L.G. & Muoi, N.V. 2020. Effects of Vacuum Concentration on Color, Polyphenol and Flavonoid Contents and Antioxidant Activity of Pomelo Citrus Maxima (Burm. f.) Merr. Juice. IOP Conf. Ser.: Mater. Sci. Eng. DOI: 10.1088/1757-899X/991/1/012060.
  • 6. Bocco, A., Cuvelier, M.-E., Richard, H. & Berset, C. 1998. Antioxidant Activity and Phenolic Composition of Citrus Peel and Seed Extracts. J. Agric. Food Chem., 46, 2123–2129, DOI: 10.1021/jf9709562.
  • 7. Arias, B. & Ramon-Laca, L. 2005. Pharmacological Properties of Citrus and Their Ancient and Medieval Uses in the Mediterranean Region. J. Ethnopharmac., 97, 89–95, DOI: 10.1016/j.jep.2004.10.019.
  • 8. Tao, N.G. & Liu, Y.J. 2012. Chemical Composition and Antimicrobial Activity of the Essential Oil from the Peel of Shatian Pummelo (Citrus Grandis Osbeck). Internat. J. Food Proper., 15, 709–716, DOI: 10.1080/10942912.2010.500067.
  • 9. Cheong, M.W., Loke, X.Q., Liu, S.Q., Pramudya, K., Curran, P. & Yu, B. 2011. Characterization of Volatile Compounds and Aroma Profiles of Malaysian Pomelo (Citrus Grandis (L.) Osbeck) Blossom and Peel. J. Essential Oil Res. 23, 34–44, DOI: 10.1080/10412905.2011.9700445.
  • 10. González, C.N., Sánchez, F., Quintero, A. & Usubillaga, A. 2002. Chemotaxonomic value of essential oil compounds in citrus species. Acta Hortic., 49–51, DOI: 10.17660/ActaHortic.2002.576.7.
  • 11. Song, H.S., Ukeda, H. & Sawamura, M. 2001. Antioxidative Activities of Citrus Peel Essential Oils and Their Components against Linoleic Acid Oxidation. FSTR 7, 50–56, DOI: 10.3136/fstr.7.50.
  • 12. Kar, F. & Arslan, N. 1999. Characterization of orange peel pectin and effect of sugars, l -ascorbic acid, ammo-nium persulfate, salts on viscosity of orange peel pectin solutions. 40, 285–291.
  • 13. Kaya, M., Sousa, A.G., Crépeau, M.J., Sørensen, S.O. & Ralet, M.C. 2014. Characterization of Citrus Pectin Samples Extracted under Different Conditions: Influence of Acid Type and PH of Extraction. Annals Bot. 114, 1319–1326, DOI: 10.1093/aob/mcu150.
  • 14. Dao, T.P., Nguyen, D.V., Tran, T.Y.N., Pham, T.N., Nguyen, P.T.N., Bach, L.G., Nguyen, V.H., Do, V.Q., Nguyen, V.M. & Tran, T.T. 2021. Effects of Tannin, Ascorbic Acid, and Total Phenolic Contents of Cashew (Anacardium Occidentale L.) Apples Blanched with Saline Solution. Food Res., 5, 409–416, DOI: 10.26656/fr.2017.5(1).454.
  • 15. Homa, B., Farzin, Z.A., Amir, F. & Mahdy, M. 2011. Comparisons between conventional, microwave and ultrasound--assisted methods for extraction of pectin from grapefruit. Chem. Engin. Proc.: Proc. Intensific. 50, 1237–1243, DOI. 10.1016/j.cep.2011.08.002.
  • 16. Salma, M. A., Jahan, N., Islam, M.A., Hoque, M.M. 2012. Extraction of Pectin from Lemon Peel: Technology Development. J. Chem. Engin. 27, 25–30, DOI: 10.3329/jce.v27i2.17797.
  • 17. Bùi Xuân Đông,. Hóa sinh-Phân III, 2014. Truóng Đai hoc Bách khoa Đà Nâng.
  • 18. Phat Dao, T., Chinh Nguyen, D., Hien Tran, T., Van Thinh, P., Quang Hieu, V., Vo Nguyen, D.V., Duy Nguyen, T. & Giang Bach, L. 2019. Modeling and optimization of the orange leaves oil extraction process by microwave-assisted hydro-distillation: the response surface method based on the central composite approach (rsm-ccd model). RJC, 12, 666–676, DOI: 10.31788/RJC.2019.1225107.
  • 19. Tran, T.H., Ke Ha, L., Nguyen, D.C., Dao, T.P., Thi Hong Nhan, L., Nguyen, D.H., Nguyen, T.D., N. Vo, D.-V., Tran, Q.T. & Bach, L.G. 2019. The Study on Extraction Process and Analysis of Components in Essential Oils of Black Pepper (Piper Nigrum L.) Seeds Harvested in Gia Lai Province, Vietnam. Processes, 7, 56, DOI: 10.3390/pr7020056.
  • 20. Njoroge, S.M., Koaze, H., Karanja, P.N., Sawamura, M. 2005. Volatile Constituents of Redblush Grapefruit (Citrus Paradisi) and Pummelo (Citrus Grandis) Peel Essential Oils from Kenya. J. Agric. Food Chem. 53, 9790–9794, DOI: 10.1021/jf051373s.
  • 21. Jia-xun, L. 2008. Study on Chemical constituents of volatile oil from Citrus maxima cv. Shatian pomelo with GC-MS, Nat. Library Med. 33(9), 1027–1031.
  • 22. Lota, M.L., Rocaa, S.D., Tomi, F. & Casanova, J. 2000. Chemical Variability of Peel and Leaf Essential Oils of Mandarins from Citrus Reticulata Blanco. Biochem. Systemat. Ecol. 28, 61–78, DOI: 10.1016/S0305-1978(99)00036-8.
  • 23. Canteri-Schemin, M.H., Fertonani, H.C.R., Waszczynskyj, N., Wosiacki, G. 2005. Extraction of Pectin from Apple Pomace. Brazil. Archives Biol. Technol., 48, 259–266, DOI: 10.1590/S1516-89132005000200013.
  • 24. Rasheed, A.M. 2008. Effect of Different Acids, Heating Time and Particle Size on Pectin Extraction from Watermelon Rinds. J. Kerbala Univ. 6.
  • 25. Prakash Maran, J., Mekala, V. & Manikandan, S. 2013. Modeling and Optimization of Ultrasound-Assisted Extraction of Polysaccharide from Cucurbita Moschata. Carbohydrate Polymers, 92, 2018–2026, DOI: 10.1016/j.carbpol.2012.11.086.
  • 26. Pasandide, B., Khodaiyan, F., Mousavi, Z. & Hosseini, S.S. 2018. Pectin Extraction from Citron Peel: Optimization by Box–Behnken Response Surface Design. Food Sci Biotechnol. 27, 997–1005, DOI: 10.1007/s10068-018-0365-6.
  • 27. Yang, Z. & Zhai, W. 2010. Optimization of Microwave--Assisted Extraction of Anthocyanins from Purple Corn (Zea Mays L.) Cob and Identification with HPLC–MS. Innov. Food Sci. & Emerging Technol. 11, 470–476, DOI: 10.1016/j. ifset.2010.03.003.
  • 28. Xue, Z.H., Zhang, X. & Zhang, Z.J. 2010. Optimization of Pectin Extraction from Citrus Peel by Response Surface Methodology. Food Sci., 32(18), 128–132.
  • 29. Hamidon, N.H. & Zaidel, D.N.A. 2017. Effect of Extraction Conditions on Pectin Yield Extracted from Sweet Potato Peels Residues Using Hydrochloric Acid. Chem. Engin. Transac. 56, 979–984, DOI: 10.3303/CET1756164.
  • 30. Foo, J.X., Abang, Z.D.N. & Ismail, N.H. 2016. Effect of Extraction Parameters on the Yield of Sweet Potato Pectin. Proceedings of the 6th International Graduate Conference on Engineering. Science and Humanities. Universiti Teknologi Malaysia. 146–148.
  • 31. Zhou, S., Wang, H. & Du, J. 2006. Ethanol extraction technology of naringin from grapefruit peel. Transac. Chinese Soc. Agric. Engin. 22,184–187.
  • 32. Nguyễn Cẩm Vân, Nguyễn Minh Chính, Đào Văn Đôn, Nguyễn Tuấn Quang, Nguyễn Quỳnh Ngọc và Nguyễn Văn Thuận, 2015. Nghiên Cứu Chiết Xuất Naringin Bằng Dung Môi Ethanol Từ Cùi Bưởi (Citrus Maxima), Tạp Chí Y - Dược Học Quân Sự Số 1.1. Uysal, B., Sozmen, F., Aktas, O., Oksal, B.S. & Kose, E.O. 2011. Essential Oil Composition and Antibacterial Activity of the Grapefruit (Citrus Paradisi. L.) Peel Essential Oils Obtained by Solvent-Free Microwave Extraction: Comparison with Hydrodistillation. Internat. J. Food Sci. Technol., 46, 1455–1461, DOI: 10.1111/j.1365-2621.2011.02640.x.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2021).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0faffbd-0fac-42cc-83a0-fd5bee4509dd
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.