PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Development of Nanocellulose Hydrogels from Sargassum Seaweed as Controlled Nutrient Release Systems and their Application in Germination

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Sargassum algae, being able to proliferate without the need to be attached to a substrate, travel through the ocean generating massive stagnations on the Caribbean coasts of the continent, becoming an environmental problem. Because its composition mainly includes polysaccharides, such as cellulose and hemicellulose, these algae were used to produce nanocellulose and create hydrogels to apply to germination. This article aims to develop of nanocellulose hydrogels from Sargassum and study the effect of it adding nanocellulose hydrogels from Sargassum algae loaded with Ca-PO4-and NO3 as nutrients in the germination process. The Sargassum algae used underwent two hydrolysis processes, one basic and one acid, with which it was possible to increase the cellulose content from 25.7 ± 0.42% to 34.05 ± 0.39 after the first hydrolysis and after 90.15 ± 0.44% after the second. Size reduction to nanocellulose was performed employing an ultrasonic homogenizer sonicator. The obtained nanocellulose was characterized using infrared spectroscopy, X-ray diffraction, and transmission electron microscopy, showing that by the alkaline method, the sizes were between 135–190 nm while by the acid method, the fiber sizes were between 108–163 nm with a difference of 1.04 in the crystallinity index between the two hydrolyses. With the nanocellulose, hydrogels were formed using 5%, 10%, and 15% borax as crosslinking agents. Drying curves and scanning electron microscopy were performed on the hydrogels. Nutrients Ca-PO4 -NO3 were added to the hydrogel and their release in water was studied through Ultraviolet-Visible spectrophotometry, with which it was decided to use the hydrogel containing 10% borax in the germination study. The effect of the hydrogel loaded with nutrients on the germination of bean and linseed seeds employing a complete factorial design 23. Obtaining results that the nutrient with the greatest influence on germination was nitrogen while the nutrient with the least favorable results was the match.
Słowa kluczowe
Twórcy
  • Universidad de Costa Rica, Sede del Caribe, Limón, Costa Rica
  • Unidad de Recursos Forestales, Instituto de Investigaciones en Ingeniería, Universidad de Costa Rica, San José, Costa Rica
  • Centro de Investigación Ciencia e Ingeniería de Materiales, Universidad de Costa Rica, San José, Costa Rica
  • Universidad de Costa Rica, Sede del Caribe, Limón, Costa Rica
  • Universidad de Costa Rica, Sede del Caribe, Limón, Costa Rica
  • Unidad de Recursos Forestales, Instituto de Investigaciones en Ingeniería, Universidad de Costa Rica, San José, Costa Rica
  • Escuela de Ingeniería de Biosistemas, Universidad de Costa Rica, San José, Costa Rica
Bibliografia
  • 1. Ai, N., Jiang, Y., Omar, S., Wang, J., Xia, L., Ren, J. 2022. Rapid Measurement of Cellulose, Hemicellulose, and Lignin Content in Sargassum horneri by Near-Infrared Spectroscopy and Characteristic Variables Selection Methods. Molecules, 27(2), 335. https://doi.org/10.3390/molecules27020335
  • 2. Akhter, J., Mahmood, K., Malik, K.A., Mardan, A., Ahmad, M., Iqbal, M.M. 2004. Effects of hydrogel amendment on water storage of sandy loam and loam soils and seedling growth of barley, wheat, and chickpea. Plant, Soil and Environment, 50(10), 463–469. https://doi.org/10.17221/4059-pse
  • 3. Alzate-Arbeláez, A.F., Dorta, E., López-Alarcón, C., Cortés, F.B., Rojano, B.A. 2019. Immobilization of Andean berry (Vaccinium meridionale) polyphenols on nanocellulose isolated from banana residues: A natural food additive with antioxidant properties. Food Chemistry, 294, 503–517. https://doi.org/10.1016/j.foodchem.2019.05.085
  • 4. Chávez-Guerrero, L., Toxqui-Teran, A., PérezCamacho, O. 2022. One-pot isolation of nanocellulose using pelagic Sargassum spp. from the Caribbean coastline. Journal of Applied Phycology, 34(1), 637–645. https://doi.org/10.1007/s10811-021-02643-5
  • 5. De France, K.J., Hoare, T., Cranston, E.D. 2017. Review of Hydrogels and Aerogels Containing Nanocellulose. Chemistry of Materials, 29(11), 4609–4631. https://doi.org/10.1021/acs.chemmater.7b00531
  • 6. Deepa, B., Abraham, E., Cordeiro, N., Mozetic, M., Mathew, A.P., Oksman, K., Faria, M., Thomas, S., Pothan, L.A. 2015. Utilization of various lignocellulosic biomass for the production of nanocellulose: a comparative study. Cellulose, 22(2), 1075–1090. https://doi.org/10.1007/s10570-015-0554-x
  • 7. Follmer, C.M., Hummes, A.P., Lângaro, N.C., Petry, C., Moterle, D.F., Bortoluzzi, E.C. 2021. Nutrient availability and pH level affect germination traits and seedling development of Conyza canadensis. Scientific Reports, 11(1), 15607. https://doi.org/10.1038/s41598-021-95164-7
  • 8. Franks, J.S., Johnson, D.R., Ko, D.S. 2016. Pelagic sargassum in the tropical North Atlantic. Gulf and Caribbean Research, 27(1). https://doi.org/10.18785/gcr.2701.08
  • 9. Gower, J., King, S. 2019. Seaweed, seaweed everywhere. In Science 364(6448), 27. American Association for the Advancement of Science. https://doi.org/10.1126/science.aay0989
  • 10. Hassan, N.S., Badri, K.H. 2014. Lignin recovery from alkaline hydrolysis and glycerolysis of oil palm fiber, 433–438. https://doi.org/10.1063/1.4895236
  • 11. Hernández, G., Toscano, V., Méndez, N., Gómez, L., Mullings, M. 2016. Effect of phosphorus concentration on its assimilation in three common beans (Phaseolus vulgaris L.) genotypes. Mesoamerican Agronomy, 7(1), 80. https://doi.org/10.15517/am.v7i1.24794
  • 12. Honorato-Salazar, J.A., Colotl-Hernández, G., Apolinar-Hidalgo, F., Aburto, J. 2016. Main chemical components of the wood of Ceiba pentandra, Hevea brasiliensis, and Ochroma pyramidale. Wood and Forests, 21(2). https://doi.org/10.21829/myb.2015.212450
  • 13. Hospodarova, V., Singovszka, E., Stevulova, N. 2018. Characterization of cellulosic fibers by FTIR spectroscopy for their further implementation to building materials. American Journal of Analytical Chemistry, 9(06), 303. https://doi.org/10.4236/ajac.2018.96023
  • 14. Jirón-García, E.G., Rodríguez Mora, K., Bernal, C. 2020. Cellulose nanofiber production from banana rachis. International Journal of Engineering Science and Computing, 10(2), 24683–24689.
  • 15. Jirón-García, E.G., Rodríguez-Mora, K., BernalSamaniego, C. 2022. Obtaining nanocellulose from African palm rachis and sugarcane bagasse. Journal Technology On the Move, 35(2), 167–1 https://doi.org/10.18845/tm.v35i3.5609
  • 16. Jirón-García, E.G., Rodríguez-Mora, K.M. 2022. Functionalization of palm rachis nanocellulose as adsorbent of metal cations from water. InterSedes. https://doi.org/10.15517/isucr.v23i48.49746
  • 17. Jones, C.S., Mayfield, S.P. 2012. Algae biofuels: versatility for the future of bioenergy. Current Opinion in Biotechnology, 23(3), 346–351. https://doi.org/10.1016/j.copbio.2011.10.013
  • 18. Kljun, A., Benians, T.A.S., Goubet, F., Meulewaeter, F., Knox, J.P., Blackburn, R.S. 2011. Comparative analysis of crystallinity changes in cellulose I polymers using ATR-FTIR, X-ray diffraction, and carbohydrate-binding module probes. Biomacromolecules, 12(11), 4121–4126. https://doi.org/10.1021/bm201176m
  • 19. Kristó, I., Vályi-Nagy, M., Rácz, A., Irmes, K., Szentpéteri, L., Jolánkai, M., Kovács, G.P., Fodor, M.Á., Ujj, A., Valentinyi, K.V., Tar, M. 2023. Effects of nutrient supply and seed size on germination parameters and yield in the next crop year of winter wheat (Triticum aestivum L.). Agriculture, 13(2), 419. https://doi.org/10.3390/agriculture13020419
  • 20. Kubo, S., Kadla, J.F. 2005. Hydrogen bonding in lignin: A fourier transform infrared model compound study. Biomacromolecules, 6(5), 2815–2821. https://doi.org/10.1021/bm050288q
  • 21. Liu, C., Lei, F., Li, P., Jiang, J., Wang, K. 2020. Borax crosslinked fenugreek galactomannan hydrogel as a potential water-retaining agent in agriculture. Carbohydrate Polymers, 236. 116100. https://doi.org/10.1016/j.carbpol.2020.116100
  • 22. Liu, S., Wu, Q., Sun, X., Yue, Y., Tubana, B., Yang, R., Cheng, H.N. 2021. Novel alginate-cellulose nanofiber-poly (vinyl alcohol) hydrogels for carrying and delivering nitrogen, phosphorus, and potassium chemicals. International Journal of Biological Macromolecules, 172, 330–340. https://doi.org/10.1016/j.ijbiomac.2021.01.063
  • 23. Lu, T., Lu, Y., Hu, L., Jiao, J., Zhang, M., Liu, Y. 2019. Uncertainty in the optical remote estimation of the biomass of Ulva proliferates macroalgae using MODIS imagery in the Yellow Sea. Optics Express, 27(13), 18620. https://doi.org/10.1364/oe.27.018620
  • 24. Marinho-Soriano, E., Fonseca, P.C., Carneiro, M.A.A., Moreira, W.S.C. 2006. Seasonal variation in the chemical composition of two tropical seaweeds. Bioresource Technology, 97(18), 2402–2406. https://doi.org/10.1016/j.biortech.2005.10.014
  • 25. Marschner, P., Rengel, Z. 2012. Chapter 12 - Nutrient Availability in Soils. In P. Marschner (Ed.), Marschner’s Mineral Nutrition of Higher Plants (Third Edition) 315–330. Academic Press. https://doi.org/https://doi.org/10.1016/B978-0-12-384905-2.00012-1
  • 26. Mattio, L., Payril, C.E. 2011. 90 Years of Sargassuni Taxonomy, Facing the Advent of DNA Phylogenies. 77, 31–70. https://doi.org/10.100
  • 27. Maurer, A.S., de Neef, E., Stapleton, S. 2015. Sargassum accumulation may spell trouble for nesting sea turtles. Frontiers in Ecology and the Environment, 13(7), 394–395. https://doi.org/10.1890/1540-9295-13.7.394
  • 28. Nagappan, H., Pee, P.P., Kee, S.H.Y., Ow, J.T., Yan, S.W., Chew, L.Y., Kong, K.W. 2017. Malaysian brown seaweeds Sargassum siliquosum and Sargassum polycystum: Low density lipoprotein (LDL) oxidation, angiotensin converting enzyme (ACE), α-amylase, and α-glucosidase inhibition activities. Food Research International, 99, 950–958. https://doi.org/10.1016/j.foodres.2017.01.023
  • 29. Patel, J.P., Parsania, P.H. 2018. Characterization, testing, and reinforcing materials of biodegradable composites. In Biodegradable and Biocompatible Polymer Composites, 55–79. Elsevier. https://doi.org/10.1016/B978-0-08-100970-3.00003-1
  • 30. Pavia, D.L., Lampman, G.M., Kriz, G.S., Vyvyan, J.R. 2009. Introduction to spectroscopy. Brooks/ Cole, Cengage Learning.
  • 31. Pazderů, K., Koudela, M. 2013. Influence of hydrogel on germination of lettuce and onion seed at different moisture levels. Journal of the Mendelian University of Agriculture and Forestry in Brunnen, 61(6), 1817–1818. https://doi.org/10.11118/actaun201361061817
  • 32. Pedroza-Sandoval, A., Yáñez-Chávez, L.G., Sánchez-Cohen, I., Samaniego-Gaxiola, J.A. 2015. Effect of hydrogel and vermicomposta on corn production. Mexican Phytotechnics Magazine, 38(4), 375. https://doi.org/10.35196/rfm.2015.4.375
  • 33. Picado White, P. 2022, March. They confirm the arrival of two species of sargassum on the coasts of the southern Costa Rican Caribbean. News University of Costa Rica. https://www.ucr.ac.cr/noticias/2022/03/22/confirman-la-llegada-de-dos-especies-de-sargazo-a-lascostas-del-caribe-costarricense.html
  • 34. Ramírez, I., Niño, G., Boada Eslava, L., Baron, A. 2007. Evaluation of hydrogels for agroforestry applications. Engineering and Research, 27, 35–44.
  • 35. Ray, D., Sain, S. 2017. Plant fiber reinforcements. In D. Ray, Biocomposites for High-Performance Applications 1–21. Woodhead Publishing. https://doi.org/https://doi.org/10.1016/B978-0-08-100793-8.00001-6
  • 36. Resiere, D., Valentino, R., Nevière, R., Banydeen, R., Gueye, P., Florentin, J., Cabié, A., Lebrun, T., Mégarbane, B., Guerrier, G., Mehdaoui, H. 2018. Sargassum seaweed on Caribbean islands: an international public health concern. The Lancet, 392(10165), 2691. https://doi.org/10.1016/S0140-6736(18)32777-6
  • 37. Rivera Fernández, R.D., Mesías Gallo, F. 2018. Hydrogel water absorption for agricultural use and its wetting of three types of soil. FCA UNCuyo Magazine, 50(2), 15–21.
  • 38. Rudzinski, W.E., Dave, A.M., Vaishnav, U.H., Kumbar, S.G., Kulkarni, A.R., Aminabhavi, T.M. 2002. Hydrogels as controlled release devices in agriculture. Designed Monomers and Polymers, 5(1), 39– 65. https://doi.org/10.1163/156855502760151580
  • 39. Salem, D.M.S.A., Ismail, M.M. 2022. Characterization of cellulose and cellulose nanofibers isolated from various seaweed species. Egyptian Journal of Aquatic Research, 48(4), 307–313. https://doi.org/10.1016/j.ejar.2021.11.001
  • 40. Schiener, P., Black, K.D., Stanley, M.S., Green, D.H. 2014. The seasonal variation in the chemical composition of the kelp species Laminaria digitata, Laminaria hyperborea, Saccharina latissima, and Alaria esculenta. Journal of Applied Phycology, 27(1), 363–373. https://doi.org/10.1007/s10811-014-0327-1
  • 41. Schwanninger, M., Rodrigues, J.C., Pereira, H., Hinterstoisser, B. 2004. Effects of short-time vibratory ball milling on the shape of FT-IR spectra of wood and cellulose. Vibrational Spectroscopy, 36(1), 23– 40. https://doi.org/10.1016/j.vibspec.2004.02.003
  • 42. Segal, L., Creely, J.J., Martin, A.E., Conrad, C.M. 1959. An empirical method for estimating the degree of crystallinity of native cellulose using the X-Ray diffractometer. Textile Research Journal, 29(10), 786– 794. https://doi.org/10.1177/004051755902901003
  • 43. Sills, D.L., Gossett, J.M. 2012. Using FTIR to predict saccharification from enzymatic hydrolysis of alkali-pretreated biomasses. Biotechnology and Bioengineering, 109(2), 353–362. https://doi.org/10.1002/bit.23314
  • 44. Sun, J.X., Sun, X.F., Zhao, H., Sun, R.C. 2004. Isolation and characterization of cellulose from sugarcane bagasse. Polymer Degradation and Stability, 84(2), 331–339. https://doi.org/10.1016/j.polymdegradstab.2004.02.008
  • 45. Sun, R., Sun, X.F., Tomkinson, J., Wang., N. 2000. Fractional isolation and physicochemical characterization of alkali-soluble lignins from fast-growing poplar wood. Polymer, 41(23), 8409–8417.
  • 46. Supramaniam, J., Adnan, R., Mohd Kaus, N.H., Bushra, R. 2018. Magnetic nanocellulose alginate hydrogel beads as a potential drug delivery system. International Journal of Biological Macromolecules, 118, 640–648. https://doi.org/10.1016/j.ijbiomac.2018.06.043
  • 47. Svobodová, H., Nonappa, Lahtinen, M., Wimmer, Z., Kolehmainen, E. 2012. A steroid-based gelator of A(LS)2 type: tuning gel properties by metal coordination. Soft Matter, 8(30), 7840. https://doi.org/10.1039/c2sm25259g
  • 48. Tamayo, J.P., Del Rosario, E.J. 2014. Chemical analysis and utilization of sargassum sp. As substrate for ethanol production. Iranica Journal of Energy and Environment, 5(2), 202–208. https://doi.org/10.5829/idosi.ijee.2014.05.02.12
  • 49. Thombare, N., Jha, U., Mishra, S., Siddiqui, M.Z. 2017. Borax cross-linked guar gum hydrogels as potential adsorbents for water purification. Carbohydrate Polymers, 168, 274–281. https://doi.org/10.1016/j.carbpol.2017.03.086
  • 50. Van Tussenbroek, B.I. 2016. Afluencia masiva de sargazo pelágico a la costa del Caribe mexicano (2014–2015). Caribe Mexicano. 353–365.
  • 51. Vargas Mesén, J., Rodríguez Mora, K. 2021. Nanocellulose functionalization from pineapple stubble and African palm rachis. Scientific, 25(2), 1–19. https://doi.org/10.46842/ipn.cien.v25n2a08
  • 52. Vargas Mesén, J., Rodríguez Mora, K., Jirón García, E., Bernal Samaniego, C. 2023. Producción de nanocelulosa a partir de rastrojo de piña y raquis de palma africana. UNED Research Journal, 15(2), e4593. https://doi.org/10.22458/urj.v15i2.4593
  • 53. Wang, M., Hu, C., Barnes, B.B., Mitchum, G., Lapointe, B., Montoya, J.P. 2019. The great Atlantic Sargassum belt. Science, 365(6448), 83–87. https://doi.org/10.1126/science.aaw7912
  • 54. Wang, M., Hu, C., Cannizzaro, J., English, D., Han, X., Naar, D., Lapointe, B., Brewton, R., Hernandez, F. 2018. Remote sensing of sargassum biomass, nutrients, and pigments. Geophysical Research Letters, 45(22), 12, 359–12, 367. https://doi.org/10.1029/2018GL078858
  • 55. Wang, Y., Shaghaleh, H., Hamoud, Y.A., Zhang, S., Li, P., Xu, X., Liu, H. 2021. Synthesis of a pHresponsive nano-cellulose/sodium alginate/MOFs hydrogel and its application in the regulation of water and N-fertilizer. International Journal of Biological Macromolecules, 187, 262–271. https://doi.org/10.1016/j.ijbiomac.2021.07.154
  • 56. Yende, S., Harle, U., Chaugule, B. 2014. Therapeutic potential and health benefits of Sargassumspecies. In Pharmacognosy Reviews, 8(15), 1–7. https://doi.org/10.4103/0973-7847.125514
  • 57. Zhang, H., Yang, M., Luan, Q., Tang, H., Huang, F., Xiang, X., Yang, C., Bao, Y. 2017. Cellulose anionic hydrogels based on cellulose nanofibers as natural stimulants for seed germination and seedling growth. In J. Agric. Food Chem., Journal of Agricultural and Food Chemistry65 (19), 3785-3791. https://doi.org/10.1021/acs.jafc.6b05815
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0f42790-d3cc-4214-b6df-48332f069024
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.