PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Non intrusive density measurements in gravity currents interacting with an obstacle

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Gravity currents are flows produced by a density difference between two fluids. Non-intrusive density measurements, based on image analysis, are employed to measure the instantaneous width averaged density fields of lock-release gravity currents. The developed technique uses dye concentration as a tracer. For each pixel of the acquired images, a calibration procedure is applied to relate the concentration of dye, uniformly distributed in the experimental tank, and the greyscale. Two calibration techniques with nine-image and two-image calibration curves, respectively, are employed to evaluate the instantaneous density fields of a gravity current with and without a bottom obstacle. The two different calibration curves affect the measurement results, i.e. instantaneous density fields, front propagation, current area and mixing. The image analysis using a nine-image calibration curve is found to give better results compared to the technique with a two-image calibration curve. The analysis performed shows how the image analysis based on a nine-image calibration curve is a more suitable technique for the study of the gravity currents dynamics and the associated mixing, which are strongly affected by the presence of a bottom obstacle.
Czasopismo
Rocznik
Strony
2499--2510
Opis fizyczny
Bibliogr. 34 poz.
Twórcy
  • Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
  • Institute of Marine Sciences, National Research Council, Rome, Italy
  • Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
  • Department of Engineering, Roma Tre University, Via Vito Volterra 62, 00146 Rome, Italy
Bibliografia
  • 1. Cuthbertson AJ, Laanearu J, Wåhlin AK, Davies PA (2011) Experimental and analytical investigation of dense gravity currents in a rotating, up-sloping and converging channel. Dyn Atmos Oceans 52:386–409
  • 2. Cuthbertson AJS, Lundberg P, Davies PA, Laanearu J (2014) Gravity currents in rotating, wedge-shaped, adverse channels. Environ Fluid Mech 14:1251–1273
  • 3. Dai A (2013) Experiments on gravity currents propagating on different bottom slopes. J Fluid Mech 731:117–141
  • 4. Dai A (2015) High-resolution simulations of downslope gravity currents in the acceleration phase. Phys Fluids 27:076602
  • 5. Dai A, Huang Y (2016) High-resolution simulations of non-boussinesq downslope gravity currents in the acceleration phase. Phys Fluids 28:026602
  • 6. De Cesare G, Schleiss A, Hermann F (2001) Impact of turbidity currents on reservoir sedimentation. J Hydraul Eng 127:6–16
  • 7. De Falco MC, Ottolenghi L, Adduce C (2020) Dynamics of gravity currents flowing up a slope and implications for entrainment. J Hydraul Eng 146(4):04020011
  • 8. De Falco MC, Adduce C, Negretti ME, Hopfinger EJ (2021) On the dynamics of quasi-steady gravity currents flowing up a slope. Adv Water Resour 147:103791
  • 9. De Falco MC, Adduce C, Cuthbertson A, Negretti ME, Laanearu J, Malcangio D, Sommeria J (2021) Experimental study of uni-and bi-directional exchange flows in a large-scale rotating trapezoidal channel. Phys Fluids 33(3):036602
  • 10. De Falco MC, Adduce C, Maggi MR (2021) Gravity currents interacting with a bottom triangular obstacle and implications on entrainment. Adv Water Resour, p 103967
  • 11. Hacker J, Linden PF, Dalziel B (1996) Mixing in lock-release gravity currents. Dyn Atmos Oceans 1–4:183–195
  • 12. Inghilesi R, Adduce C, Lombardi V, Roman F, Armenio V (2018) Axisymmetric three-dimensional gravity currents generated by lock-exchange. J Fluid Mech 851:507–544
  • 13. La Forgia G, Tokyay T, Adduce C, Constantinescu G (2018) Numericalinvestigation of breaking internal solitary waves. Phys. Rev. Fluids 3:104801
  • 14. La Forgia G, Ottolenghi L, Adduce C, Falcini F (2020) Intrusions and solitons: propagation and collision dynamics. Phys Fluids 32(7):076605
  • 15. La Forgia G, Cavaliere D, Adduce C, Falcini F (2021) Mixing efficiency for breaking internal solitary waves. J. Geophys. Res. Oceans, e2021JC017275
  • 16. Lane-Serff GF, Beal LM, Hadfield TD (1995) Gravity current flow over obstacles. J Fluid Mech 292:39–53
  • 17. La Rocca M, Prestininzi P, Adduce C, Sciortino G, Hinkelmann R (2013) Lattice Boltzmann simulation of 3D gravity currents around obstacles. Int J Offshore Polar Eng. 23(03)
  • 18. Lombardi V, Adduce C, La Rocca M (2018) Unconfined lock-exchange gravity currents with variable lock width: laboratory experiments and shallow-water simulations. J Hydraul Res 56:399–411
  • 19. Oehy CD, Schleiss J (2007) Control of turbidity currents in reservoirs by solid and permeable obstacles. J Hydraul Eng 133:53–63
  • 20. Ooi SK, Constantinescu SG, Weber L (2009) Numerical simulations of lock exchange compositional gravity currents. J Fluid Mech 635:361–388
  • 21. Ottolenghi L, Adduce C, Inghilesi R, Armenio V, Roman F (2016) Entrainment and mixing in unsteady gravity currents. J Hydraul Res 54:541–557
  • 22. Ottolenghi L, Adduce C, Roman F, Armenio V (2017) Analysis of the flow in gravity currents propagating up a slope. Ocean Model 115:1–13
  • 23. Ottolenghi L, Prestininzi P, Montessori A, Adduce C, La Rocca M (2018) Lattice Boltzmann simulations of gravity currents. European J. Mech.-B/Fluids, 67, 125-136
  • 24. Ottolenghi L, Adduce C, Roman F, la Forgia G (2020) Large eddy simulations of solitons colliding with intrusions. Phys Fluids 32(9):096606
  • 25. Simpson JE (1997) Gravity currents: In the Environment and the Laboratory. Cambridge University Press
  • 26. Steenhauer K, Tokyay T, Constantinescu G (2017) Dynamics and structure of planar gravity currents propagating down an inclined surface. Phys Fluids 29:036604
  • 27. Theiler Q, Franca MJ (2016) Contained density currents with high volume of release. Sedimentology 63(6):1820–1842
  • 28. Thomas LP, Marino BM (2012) Inertial density currents over porous media limited by different lower boundary conditions. J Hydraul Eng 138:133–42
  • 29. Tokyay T, Constantinescu G (2015) The effects of a submerged non-erodible triangular obstacle on bottom propagating gravity currents. Phys Fluids 27:056601
  • 30. Wilson RI, Friedrich H, Stevens C (2017) Turbulent entrainment in sediment-laden flows interacting with an obstacle. Phys Fluids 29:036603
  • 31. Wilson RI, Friedrich H, Stevens C (2018) Image thresholding process for combining photometry with intrusive flow instruments. J Hydraul Eng 56:282–290
  • 32. Winters KB, Lombard PN, Riley JJ, D‘Asaro EA (1995) Available potential energy and mixing in density-stratified fluids. J Fluid Mech 289:115
  • 33. Zordan J, Juez C, Schleiss AJ, Franca MJ (2018) Entrainment, transport and deposition of sediment by saline gravity currents. Adv Water Resour 115:17–32
  • 34. Zordan J, Schleiss AJ, Franca MJ (2018) Structure of a dense release produced by varying initial conditions. Environ Fluid Mech 18:1101–1119
Uwagi
PL
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0f0b452-37dd-413d-9973-024a41b59109
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.