PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Additive manufacturing of metallic biomaterials: a concise review

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Additive manufacturing (AM) is one of the critical techniques of novel medical devices which is capable of processing complicated or customized structures to best match the human’s bones and tissues. AM allows for the fabrication of devices with optimal architectures, complicated morphologies, surface integrity, and regulated porosity and chemical composition. Various AM methods can now consistently fabricate dense products for a range of metallic, nonmetallic, composites, and nanocomposites. Different studies are available that describe the microstructure and various properties of 3D-printed biomedical alloys. However, there are limited research on the wear characteristics, corrosion resistance, and biocompatibility of 3D-printed technology-constructed biomedical alloys. In this article, AM metallic biomaterials such as stainless steel, magnesium, cobalt–chromium, and titanium are reviewed along with their alloys. The helicopter view of essential characteristics of these additively manufactured biomaterials is comprised. The review will have a significant impact on fabricating metallic surgical equipment and its sturdiness in the biomedical field.
Rocznik
Strony
art. no. e187, 2023
Opis fizyczny
Bibliogr. 99 poz., rys., wykr.
Twórcy
autor
  • Department of Mechanical Engineering, Khalsa College of Engineering and Technology, Amritsar 143001, India
  • Department of Mechanical Engineering, Khalsa College of Engineering and Technology, Amritsar 143001, India
  • Department of Mechanical Engineering, Khalsa College of Engineering and Technology, Amritsar 143001, India
Bibliografia
  • 1. Singh S, Prakash C, Ramakrishna S. 3D printing of polyether-ether-ketone for biomedical applications. Eur Polym J. 2019;114:234–48. https://doi.org/10.1016/J.EURPOLYMJ.2019. 02.035.
  • 2. Festas AJ, Ramos A, Davim JP. Medical devices biomaterials—a review. Proc Inst Mech Eng L. 2019;234:218–28. https://doi.org/ 10.1177/1464420719882458.
  • 3. Singh G, Sidhu SS, Bains PS, Singh M, Bhui AS. On surface modification of Ti alloy by electro discharge coating using hydroxyapatite powder mixed dielectric with graphite tool. J Bio- Tribo-Corros. 2020;6:1–11. https:// doi. org/ 10. 1007/ S40735-020-00389-0.
  • 4. Mahajan A, Sidhu SS, Ablyaz T. EDM surface treatment: an enhanced biocompatible interface. Singapore: Springer Singapore; 2019. p. 33–40. https://doi.org/10.1007/978-981-13-9977-0_3.
  • 5. Acharya S, Soni R, Suwas S, Chatterjee K. Additive manufac- turing of Co–Cr alloys for biomedical applications: a concise review. J Mater Res. 2021;36:3746–60. https://doi.org/10.1557/ S43578-021-00244-Z.
  • 6. bookTitle Additive Manufacturing of Metals, 67 (2020). https:// doi.org/10.21741/9781644900635.
  • 7. Zuback JS, DebRoy T. The hardness of additively manufactured alloys. Materials. 2018;11:2070. https://doi.org/10.3390/MA111 12070.
  • 8. Yang HG. Numerical simulation of the temperature and stress state on the additive friction stir with the smoothed particle hydrodynamics method. Strength Mater. 2020;52:24–31. https://doi.org/ 10.1007/S11223-020-00146-1.
  • 9. Pandey A, Awasthi A, Saxena KK. Metallic implants with properties and latest production techniques: a review. Adv Mater Process Technol. 2020;6:167–202. https:// doi. org/ 10. 1080/ 23740 68X. 2020.1731236.
  • 10. Ford S, Despeisse M. Additive manufacturing and sustainability: an exploratory study of the advantages and challenges. J Clean Prod. 2016;137:1573–87. https://doi.org/10.1016/J.JCLEPRO. 2016.04.150.
  • 11. Hodonou C, Balazinski M, Brochu M, Mascle C. Material-design-process selection methodology for aircraft structural components: application to additive vs subtractive manufacturing processes. Int J Adv Manuf Technol. 2019;103:1509–17. https://doi.org/10. 1007/S00170-019-03613-5.
  • 12. Bose S, Ke D, Sahasrabudhe H, Bandyopadhyay A. Additive manufacturing of biomaterials. Prog Mater Sci. 2018;93:45–111. https://doi.org/10.1016/J.PMATSCI.2017.08.003.
  • 13. Bose S, Robertson SF, Bandyopadhyay A. Surface modification of biomaterials and biomedical devices using additive manufacturing. Acta Biomater. 2018;66:6–22. https://doi.org/10.1016/J. ACTBIO.2017.11.003.
  • 14. Kumar R, Kumar M, Chohan JS. The role of additive manufactur- ing for biomedical applications: a critical review. J Manuf Process. 2021;64:828–50. https://doi.org/10.1016/J.JMAPRO.2021.02.022.
  • 15. Shields Y, De Belie N, Jefferson A, al -, X. Wu, Y. Su, J. Shi, S. Paul, A. Nath, S. Shekhar Roy,. Additive manufacturing of multifunctional biomaterials for bioimplants: a review. IOP Conf Ser Mater Sci Eng. 2021;1136:012016. https://doi.org/10.1088/1757- 899X/1136/1/012016.
  • 16. Chua K, Khan I, Malhotra R, Zhu D. Additive manufacturing and 3D printing of metallic biomaterials. Eng Regen. 2021;2:288–99. https://doi.org/10.1016/J.ENGREG.2021.11.002.
  • 17. Hedlundh U, Karlsson L. Combining a hip arthroplasty stem with trochanteric reattachment bolt and a polyaxial locking plate in the treatment of a periprosthetic fracture below a well-integrated implant. Arthroplast Today. 2016;2:141–5. https:// doi. org/ 10. 1016/J.ARTD.2016.02.002.
  • 18. Saikko V, Ahlroos T, Revitzer H, Ryti O, Kuosmanen P. The effect of acetabular cup position on wear of a large-diameter metal-on- metal prosthesis studied with a hip joint simulator. Tribol Int. 2013;60:70–6. https://doi.org/10.1016/J.TRIBOINT.2012.10.011.
  • 19. Tischler M, Patch C, Bidra AS. Rehabilitation of edentulous jaws with zirconia complete-arch fixed implant-supported prosthe- ses: an up to 4-year retrospective clinical study. J Prosthet Dent. 2018;120:204–9. https://doi.org/10.1016/J.PROSDENT.2017.12. 010.
  • 20. Ibrahim MZ, Halilu A, Sarhan AAD, Kuo TY, Yusuf F, Shaikh MO, Hamdi M. In-vitro viability of laser cladded Fe-based metallic glass as a promising bioactive material for improved osseointe-gration of orthopedic implants. Med Eng Phys. 2022;102:103782. https://doi.org/10.1016/J.MEDENGPHY.2022.103782.
  • 21. Liu D, Fu J, Fan H, Li D, Dong E, Xiao X, Wang L, Guo Z. Application of 3D-printed PEEK scapula prosthesis in the treatment of scapular benign fibrous histiocytoma: a case report. J Bone Oncol. 2018;12:78–82. https://doi.org/10.1016/J.JBO.2018.07.012.
  • 22. Almog DM, Torrado E, Meitner SW. Fabrication of imaging and surgical guides for dental implants. J Prosthet Dent. 2001;85:504– 8. https://doi.org/10.1067/MPR.2001.115388.
  • 23. Jardini AL, Larosa MA, Macedo MF, Bernardes LF, Lambert CS, Zavaglia CAC, Filho RM, Calderoni DR, Ghizoni E, Khar- mandayan P. Improvement in cranioplasty: advanced prosthesis biomanufacturing. Procedia CIRP. 2016;49:203–8. https://doi.org/ 10.1016/J.PROCIR.2015.11.017.
  • 24. Vignesh M, Ranjith Kumar G, Sathishkumar M, Manikandan M, Rajyalakshmi G, Ramanujam R, Arivazhagan N. Development of biomedical implants through additive manufacturing: a review. J Mater Eng Perform. 2021;30:4735–44. https://doi.org/10.1007/ S11665-021-05578-7/FIGURES/11.
  • 25. Beg S, Almalki WH, Malik A, Farhan M, Aatif M, Rahman Z, Alruwaili NK, Alrobaian M, Tarique M, Rahman M. 3D printing for drug delivery and biomedical applications. Drug Discov Today. 2020;25:1668–81. https:// doi. org/ 10. 1016/J. DRUDIS. 2020.07.007.
  • 26. Choonara YE, Du Toit LC, Kumar P, Kondiah PPD, Pillay V. 3D-printing and the effect on medical costs: a new era? Expert Rev Pharmacoecon Outcomes Res. 2016;16:23–32. https://doi. org/10.1586/14737167.2016.1138860.
  • 27. Paul CP, Jinoop AN, Bindra KS. Metal additive manufacturing using lasers. Addit Manuf. 2018. https:// doi. org/ 10. 1201/ B22179-2.
  • 28. Wasti S, Adhikari S. Use of biomaterials for 3D printing by fused deposition modeling technique: a review. Front Chem. 2020;8:315. https:// doi. org/ 10. 3389/ FCHEM. 2020. 00315/ BIBTEX.
  • 29. Ni J, Ling H, Zhang S, Wang Z, Peng Z, Benyshek C, Zan R, Miri AK, Li Z, Zhang X, Lee J, Lee KJ, Kim HJ, Tebon P, Hoffman T, Dokmeci MR, Ashammakhi N, Li X, Khademhosseini A. Three-dimensional printing of metals for biomedical applications. Mater Today Bio. 2019;3:100024. https://doi.org/ 10.1016/J.MTBIO.2019.100024.
  • 30. Xia Z, Jin S, Ye K. Tissue and organ 3D bioprinting. SLAS Technol. 2018;23:301–14. https://doi.org/10.1177/2472630318 760515/ ASSET/ IMAGES/ LARGE/ 10. 1177_ 24726 30318 760515-FIG2.JPEG.
  • 31. HANDBOOK OF MATERIALS FOR MEDICAL DEVICES, (2003). www. asmin ternational. orgwww. asmin terna tional. org (Accessed 24 Sept 2022).
  • 32. Mahajan A, Sidhu SS, Devgan S. Enhancing tribological properties of duplex stainless steel via electrical discharge treatment. Non-Conv Hybrid Mach Process. 2020. https://doi.org/10.1201/ 9780429029165-9.
  • 33. Mahajan A, Devgan S, Kalyanasundaram D. Surface alteration of cobalt-chromium and duplex stainless steel alloys for biomedical applications: a concise review. Mater Manuf Process. 2022. https://doi.org/10.1080/10426914.2022.2105873.
  • 34. Geantǎ V, Voiculescu I, Stefǎnoiu R, Rusu ER. Stainless steels with biocompatible properties for medical devices. Key Eng Mater. 2014;583:9–15. https://doi.org/10.4028/WWW.SCIEN TIFIC.NET/KEM.583.9.
  • 35. Xie F, He X, Cao S, Qu X. Structural and mechanical characteristics of porous 316L stainless steel fabricated by indirect selective laser sintering. J Mater Process Technol. 2013;213:838–43. https://doi.org/10.1016/J.JMATPROTEC.2012.12.014.
  • 36. Sakthivel N, Bramsch J, Voung P, Swink I, Averick S, Vora HD. Investigation of 3D-printed PLA–stainless-steel polymeric composite through fused deposition modelling-based additive manufacturing process for biomedical applications. Med Devices Sensors. 2020;3:e10080. https://doi.org/10.1002/MDS3.10080.
  • 37. Mota C, Puppi D, Chiellini F, Chiellini E. Additive manufac- turing techniques for the production of tissue engineering constructs. J Tissue Eng Regen Med. 2015;9:174–90. https://doi. org/10.1002/TERM.1635.
  • 38. Qing Y, Li K, Li D, Qin Y. Antibacterial effects of silver incorporated zeolite coatings on 3D printed porous stainless steels. Mater Sci Eng C. 2020;108:110430. https://doi.org/10.1016/J. MSEC.2019.110430.
  • 39. Bartolomeu F, Buciumeanu M, Pinto E, Alves N, Carvalho O, Silva FS, Miranda G. 316L stainless steel mechanical and tribological behavior—A comparison between selective laser melting, hot pressing and conventional casting. Addit Manuf. 2017;16:81–9. https://doi.org/10.1016/J.ADDMA.2017.05.007.
  • 40. Lodhi MJK, Deen KM, Greenlee-Wacker MC, Haider W. Additively manufactured 316L stainless steel with improved corrosion resistance and biological response for biomedical applications. Addit Manuf. 2019;27:8–19. https:// doi.org/ 10. 1016/J. ADDMA.2019.02.005.
  • 41. Li J, Qu H, Bai J. Grain boundary engineering during the laser powder bed fusion of TiC/316L stainless steel composites: New mechanism for forming TiC-induced special grain boundaries. Acta Mater. 2022;226:117605. https://doi.org/10.1016/J. ACTAMAT.2021.117605.
  • 42. Luo J, Jia X, Gu R, Zhou P, Huang Y, Sun J, Yan M. 316L stainless steel manufactured by selective laser melting and its biocompatibility with or without hydroxyapatite coating. Met- als. 2018;8:548. https://doi.org/10.3390/MET8070548.
  • 43. Tsutsumi Y, Ishimoto T, Oishi T, Manaka T, Chen P, Ashida M, Doi K, Katayama H, Hanawa T, Nakano T. Crystallographic texture and grain boundary density-independent improvement of corrosion resistance in austenitic 316L stainless steel fabricated via laser powder bed fusion. Addit Manuf. 2021;45:102066. https://doi.org/10.1016/J.ADDMA.2021.102066.
  • 44. Chen L, Richter B, Zhang X, Ren X, Pfefferkorn FE. Modification of surface characteristics and electrochemical corrosion behavior of laser powder bed fused stainless-steel 316L after laser polishing. Addit Manuf. 2020;32:101013. https://doi.org/10.1016/J. ADDMA.2019.101013.
  • 45. Kopp A, Derra T, Müther M, Jauer L, Schleifenbaum JH, Voshage M, Jung O, Smeets R, Kröger N. Influence of design and post-processing parameters on the degradation behavior and mechanical properties of additively manufactured magnesium scaffolds. Acta Biomater. 2019;98:23–35. https://doi.org/10.1016/J.ACT- BIO.2019.04.012.
  • 46. Wang Y, Fu P, Wang N, Peng L, Kang B, Zeng H, Yuan G, Ding W. Challenges and solutions for the additive manufacturing of biodegradable magnesium implants. Engineering. 2020;6:1267–75. https://doi.org/10.1016/J.ENG.2020.02.015.
  • 47. Nagels J, Stokdijk M, Rozing PM. Stress shielding and bone resorption in shoulder arthroplasty. J Shoulder Elb Surg. 2003;12:35–9. https://doi.org/10.1067/MSE.2003.22.
  • 48. Witte F, Fischer J, Nellesen J, Crostack HA, Kaese V, Pisch A, Beckmann F, Windhagen H. In vitro and in vivo corrosion measurements of magnesium alloys. Biomaterials. 2006;27:1013–8. https://doi.org/10.1016/J.BIOMATERIALS.2005.07.037.
  • 49. Hermawan H, Dubé D, Mantovani D. Developments in metallic biodegradable stents. Acta Biomater. 2010;6:1693–7. https://doi. org/10.1016/J.ACTBIO.2009.10.006.
  • 50. Antoniac I, Miculescu M, Mănescu V, Stere A, Quan PH, Păltânea G, Robu A, Earar K. Magnesium-based alloys used in orthopedic surgery. Materials (Basel). 2022;15:1148. https://doi.org/10.3390/ MA15031148.
  • 51. Karunakaran R, Ortgies S, Tamayol A, Bobaru F, Sealy MP. Additive manufacturing of magnesium alloys. Bioact Mater. 2020;5:44–54. https://doi.org/10.1016/J.BIOACTMAT.2019.12. 004.
  • 52. Allavikutty R, Gupta P, Santra TS, Rengaswamy J. Additive manufacturing of Mg alloys for biomedical applications: current status and challenges. Curr Opin Biomed Eng. 2021;18:100276. https:// doi.org/10.1016/J.COBME.2021.100276.
  • 53. Ng CC, Savalani M, Man HC. Fabrication of magnesium using selective laser melting technique. Rapid Prototyp J. 2011;17:479– 90. https://doi.org/10.1108/13552541111184206/FULL/XML.
  • 54. Ho YH, Joshi SS, Wu TC, Hung CM, Ho NJ, Dahotre NB. In-vitro bio-corrosion behavior of friction stir additively manufactured AZ31B magnesium alloy-hydroxyapatite composites. Mater Sci Eng C. 2020;109:110632. https://doi.org/10.1016/J.MSEC.2020. 110632.
  • 55. Esmaily M, Zeng Z, Mortazavi AN, Gullino A, Choudhary S, Derra T, Benn F, D’Elia F, Müther M, Thomas S, Huang A, Allanore A, Kopp A, Birbilis N. A detailed microstructural and corrosion analysis of magnesium alloy WE43 manufactured by selective laser melting Addit. Manuf. 2020;35:101321. https:// doi.org/10.1016/J.ADDMA.2020.101321.
  • 56. Liu J, Liu B, Min S, Yin B, Peng B, Yu Z, Wang C, Ma X, Wen P, Tian Y, Zheng Y. Biodegradable magnesium alloy WE43 porous scaffolds fabricated by laser powder bed fusion for orthopedic applications: process optimization, in vitro and in vivo investigation. Bioact Mater. 2022;16:301–19. https://doi.org/10.1016/J. BIOACTMAT.2022.02.020.
  • 57. Nilsson Åhman H, D’Elia F, Mellin P, Persson C. Microstructural origins of the corrosion resistance of a Mg-Y-Nd-Zr alloy processed by powder bed fusion—laser beam. Front Bioeng Biotechnol. 2022;10:1184. https://doi.org/10.3389/FBIOE.2022.917812/ BIBTEX.
  • 58. Li Y, Zhou J, Pavanram P, Leeflang MA, Fockaert LI, Pouran B, Tümer N, Schröder KU, Mol JMC, Weinans H, Jahr H, Zadpoor AA. Additively manufactured biodegradable porous magnesium. Acta Biomater. 2018;67:378–92. https://doi.org/10.1016/J.ACT- BIO.2017.12.008.
  • 59. Yin Y, Huang Q, Liang L, Hu X, Liu T, Weng Y, Long T, Liu Y, Li Q, Zhou S, Wu H. In vitro degradation behavior and cytocom-patibility of ZK30/bioactive glass composites fabricated by selective laser melting for biomedical applications. J Alloys Compd. 2019;785:38–45. https://doi.org/10.1016/J.JALLCOM.2019.01. 165.
  • 60. Kuah KX, Blackwood DJ, Ong WK, Salehi M, Seet HL, Nai MLS, Wijesinghe S. Analysis of the corrosion performance of binder jet additive manufactured magnesium alloys for biomedical appli- cations. J Magnes Alloy. 2022;10:1296–310. https://doi.org/10. 1016/J.JMA.2021.11.016.
  • 61. Dong J, Tümer N, Putra NE, Zhu J, Li Y, Leeflang MA, Taheri P, Fratila-Apachitei LE, Mol JMC, Zadpoor AA, Zhou J. Extrusion-based 3D printed magnesium scaffolds with multifunctional MgF2 and MgF2–CaP coatings. Biomater Sci. 2021;9:7159–82. https:// doi.org/10.1039/D1BM01238J.
  • 62. Long T, Zhang X, Huang Q, Liu L, Liu Y, Ren J, Yin Y, Wu D, Wu H. Novel Mg-based alloys by selective laser melting for biomedical applications: microstructure evolution, microhardness and in vitro degradation behavior. Virtual Phys Prototyp. 2017;13:71–81. https://doi.org/10.1080/17452759.2017.1411662.
  • 63. Mahajan A, Singh G, Devgan S, Sidhu SS. EDM performance characteristics and electrochemical corrosion analysis of Co-Cr alloy and duplex stainless steel: a comparative study. Proc Inst Mech Eng E. 2020;235:812–23. https://doi.org/10.1177/09544 08920976739.
  • 64. Beake BD, Liskiewicz TW. Comparison of nano-f`retting and nano-scratch tests on biomedical materials. Tribol Int. 2013;63:123–31. https://doi.org/10.1016/J.TRIBOINT.2012.08. 007.
  • 65. Niinomi M. Recent metallic materials for biomedical applications. Metall Mater Trans A. 2002;33(3):477–86. https://doi.org/ 10.1007/S11661-002-0109-2.
  • 66. Hyslop DJS, Abdelkader AM, Cox A, Fray DJ. Electrochemical synthesis of a biomedically important Co–Cr alloy. Acta Mater. 2010;58:3124–30. https://doi.org/10.1016/J.ACTAMAT.2010.01. 053.
  • 67. Souza JCM, Mota RRC, Sordi MB, Passoni BB, Benfatti CAM, Magini RS. Biofilm formation on different materials used in oral rehabilitation. Braz Dent J. 2016;27:141–7. https://doi.org/10. 1590/0103-6440201600625.
  • 68. Chen Q, Thouas GA. Metallic implant biomaterials. Mater Sci Eng R Reports. 2015;87:1–57. https://doi.org/10.1016/J.MSER. 2014.10.001.
  • 69. Giacchi JV, Morando CN, Fornaro O, Palacio HA. Microstruc- tural characterization of as-cast biocompatible Co–Cr–Mo alloys. Mater Charact. 2011;62:53–61. https://doi.org/10.1016/J.MATCH AR.2010.10.011.
  • 70. Rosenthal R, Cardoso BR, Bott IS, Paranhos RPR, Carvalho EA. Phase characterization in as-cast F-75 Co–Cr–Mo–C alloy. J Mater Sci. 2010;45(5):4021–8. https://doi.org/10.1007/ S10853-010-4480-X.
  • 71. Barucca G, Santecchia E, Majni G, Girardin E, Bassoli E, Denti L, Gatto A, Iuliano L, Moskalewicz T, Mengucci P. Structural characterization of biomedical Co-Cr-Mo components produced by direct metal laser sintering. Mater Sci Eng C Mater Biol Appl. 2015;48:263–9. https://doi.org/10.1016/J.MSEC.2014.12.009.
  • 72. Sun SH, Koizumi Y, Kurosu S, Li YP, Matsumoto H, Chiba A. Build direction dependence of microstructure and high-temperature tensile property of Co-Cr-Mo alloy fabricated by electron beam melting. Acta Mater. 2014;64:154–68. https:// doi.org/10. 1016/J.ACTAMAT.2013.10.017.
  • 73. Haan J, Asseln M, Zivcec M, Eschweiler J, Radermacher R, Broeckmann C. Effect of subsequent hot isostatic pressing on mechanical properties of ASTM F75 alloy produced by selective laser melting. Powder Metall. 2015;58:161–5. https://doi.org/ 10.1179/0032589915Z.000000000236.
  • 74. Mantrala KM, Das M, Balla VK, Srinivasa Rao C, Kesava Rao VVS. Laser-deposited CoCrMo alloy: microstructure, wear, and electrochemical properties. J Mater Res. 2014;29(17):2021–7. https://doi.org/10.1557/JMR.2014.163.
  • 75. Isik M, Avila JD, Bandyopadhyay A. Alumina and tricalcium phosphate added CoCr alloy for load-bearing implants. Addit Manuf. 2020;36:101553. https:// doi. org/ 10. 1016/J. ADDMA. 2020.101553.
  • 76. Sahasrabudhe H, Bose S, Bandyopadhyay A. Laser processed calcium phosphate reinforced CoCrMo for load-bearing applications: processing and wear induced damage evaluation. Acta Biomater. 2018;66:118–28. https://doi.org/10.1016/J.ACTBIO. 2017.11.022.
  • 77. Iatecola A, Longhitano GA, Antunes LHM, Jardini AL, de Castro Miguel E, Béreš M, Lambert CS, Andrade TN, Buchaim RL, Buchaim DV, Pomini KT, Dias JA, Spressão DRMS, Felix M, Cardoso GBC, da Cunha MR. Osseointegration improvement of Co-Cr-Mo alloy produced by additive manufacturing. Pharmaceutics. 2021;13:724. https://doi.org/10.3390/PHARMACEUT ICS13050724.
  • 78. Stenlund P, Kurosu S, Koizumi Y, Suska F, Matsumoto H, Chiba A, Palmquist A. Osseointegration enhancement by Zr doping of Co-Cr-Mo implants fabricated by electron beam melting. Addit Manuf. 2015;6:6–15. https://doi.org/10.1016/J.ADDMA.2015. 02.002.
  • 79. Sidambe AT. Effects of build orientation on 3D-printed Co-Cr- Mo: surface topography and L929 fibroblast cellular response. Int J Adv Manuf Technol. 2018;99(1):867–80. https://doi.org/ 10.1007/S00170-018-2473-0.
  • 80. W. Toh, X. Tan, Z. Sun, E. Liu, S. Tor, C. Chua, Comparative Study on Tribological Behavior of Ti-6Al-4V and Co-Cr-Mo Samples Additively Manufactured with Electron Beam Melting, Undefined. (2016).
  • 81. Caravaggi P, Liverani E, Leardini A, Fortunato A, Belvedere C, Baruffaldi F, Fini M, Parrilli A, Mattioli-Belmonte M, Tomesani L, Pagani S. CoCr porous scaffolds manufactured via selective laser melting in orthopedics: topographical, mechanical, and biological characterization. J Biomed Mater Res B Appl Biomater. 2019;107:2343–53. https://doi.org/10.1002/JBM.B. 34328.
  • 82. Amanov A. Effect of post-additive manufacturing surface modification temperature on the tribological and tribocorrosion properties of Co-Cr-Mo alloy for biomedical applications. Surf Coatings Technol. 2021;421:127378. https://doi.org/10.1016/J. SURFCOAT.2021.127378.
  • 83. Devgan S, Mahajan A, Sidhu SS. Multi-walled carbon nanotubes in powder mixed electrical discharge machining: an experimental study, state of the art and feasibility prospect. Appl Phys A. 2021;127(11):1–15. https:// doi. org/ 10. 1007/ S00339-021-04934-7.
  • 84. Geetha M, Singh AK, Asokamani R, Gogia AK. Ti based biomaterials, the ultimate choice for orthopaedic implants—A review. Prog Mater Sci. 2009;54:397–425. https:// doi. org/ 10. 1016/J.PMATSCI.2008.06.004.
  • 85. Uçar U, Balo F. Determining of the convenient metal dental implant material in terms of strength properties. Org Med Chem Int J. 2018;6:41–3. https:// doi. org/ 10. 19080/ OMCIJ. 2018. 06. 555683.
  • 86. Trevisan F, Calignano F, Aversa A, Marchese G, Lombardi M, Biamino S, Ugues D, Manfredi D. Additive manufacturing of titanium alloys in the biomedical field: processes, properties and applications. J Appl Biomater Funct Mater. 2018;16:57–67. https:// doi. org/ 10. 5301/ JABFM. 50003 71/ ASSET/ IMAGES/ LARGE/10.5301_JABFM.5000371-FIG2.JPEG.
  • 87. Bhui AS, Singh G, Sidhu SS, Bains PS. Experimental investigation of MWCNTs mixed EDM of Ti-6Al-4V surface. Int J Precis Technol. 2020;9:56. https://doi.org/10.1504/IJPTECH. 2020.109778.
  • 88. Herzog D, Seyda V, Wycisk E, Emmelmann C. Additive manu- facturing of metals. Acta Mater. 2016;117:371–92. https://doi. org/10.1016/J.ACTAMAT.2016.07.019.
  • 89. Devgan S, Mahajan A, Singh G, Singh G, Sidhu SS. Surface integrity of powder mixed electrical discharge treated substrate at high discharge energies. Lect Notes Mech Eng. 2022. https:// doi.org/10.1007/978-981-16-2278-6_18/COVER.
  • 90. Warnke PH, Douglas T, Wollny P, Sherry E, Steiner M, Galonska S, Becker ST, Springer IN, Wiltfang J, Sivananthan S. Rapid prototyping: porous titanium alloy scaffolds produced by selective laser melting for bone tissue engineering. Tissue Eng C Methods. 2009;15:115–24. https://doi.org/10.1089/TEN.TEC. 2008.0288.
  • 91. Wu SH, Li Y, Zhang YQ, Li XK, Yuan CF, Hao YL, Zhang ZY, Guo Z. Porous titanium-6 aluminum-4 vanadium cage has better osseointegration and less micromotion than a polyether-ether-ketone cage in sheep vertebral fusion. Artif Organs. 2013;37:E191–201. https://doi.org/10.1111/AOR.12153.
  • 92. Zhang LC, Klemm D, Eckert J, Hao YL, Sercombe TB. Manufacture by selective laser melting and mechanical behavior of a biomedical Ti–24Nb–4Zr–8Sn alloy. Scr Mater. 2011;65:21–4. https://doi.org/10.1016/J.SCRIPTAMAT.2011.03.024.
  • 93. Luo JP, Huang YJ, Xu JY, Sun JF, Dargusch MS, Hou CH, Ren L, Wang RZ, Ebel T, Yan M. Additively manufactured biomedical Ti-Nb-Ta-Zr lattices with tunable Young’s modulus: mechanical property, biocompatibility, and proteomics analysis. Mater Sci Eng C. 2020;114:110903. https://doi.org/10.1016/J. MSEC.2020.110903.
  • 94. Liang H, Zhao D, Feng X, Ma L, Deng X, Han C, Wei Q, Yang C. 3D-printed porous titanium scaffolds incorporating niobium for high bone regeneration capacity. Mater Des. 2020;194:108890. https:// doi. org/ 10. 1016/J. MATDES. 2020. 108890.
  • 95. Yu M, Wan Y, Ren B, Wang H, Zhang X, Qiu C, Liu A, Liu Z. 3D printed Ti-6Al-4V implant with a micro/nanostructured surface and its cellular responses. ACS Omega. 2020;5:31738–43. https://doi.org/10.1021/ACSOMEGA.0C04373.
  • 96. Attar H, Bermingham MJ, Ehtemam-Haghighi S, Dehghan- Manshadi A, Kent D, Dargusch MS. Evaluation of the mechanical and wear properties of titanium produced by three different additive manufacturing methods for biomedical application. Mater Sci Eng A. 2019;760:339–45. https://doi.org/10.1016/J. MSEA.2019.06.024
  • 97. Bhardwaj T, Shukla M, Prasad NK, Paul CP, Bindra KS. Direct laser deposition-additive manufacturing of Ti–15Mo alloy: effect of build orientation induced surface topography on cor- rosion and bioactivity. Metals Mater Int. 2019;26(7):1015–29. https://doi.org/10.1007/S12540-019-00464-3.
  • 98. Balasubramanian Gayathri YK, Kumar RL, Ramalingam VV, Priyadharshini GS, Kumar KS, Prabhu TR. Additive manufacturing of Ti-6Al-4V alloy for biomedical applications. J Bio- Tribo-Corros. 2022;8(4):1–20. https:// doi. org/ 10. 1007/ S40735-022-00700-1.
  • 99. Santos PB, de Castro VV, Baldin EK, Aguzzoli C, Longhitano GA, Jardini AL, Lopes ÉSN, de Andrade AMH, de Fraga Malfatti C. Wear resistance of plasma electrolytic oxidation coatings on Ti-6Al-4V eli alloy processed by additive manufacturing. Metals. 2022;12:1070. https://doi.org/10.3390/MET12071070.
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0efc154-f365-40ff-bc0f-9d5246d5396c
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.