PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

General characteristics of tidal currents in the entrance of Khor Abdullah, northwest of Arabian Gulf

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The general characteristics of tidal currents in the entrance of the Khor Abdullah at Iraq marine water, located at the northwest tip of the Arabian Gulf, were studied based on realistic current measurements. The velocity measurements used in this study extended to about one year, which was never previously available in this vital region of the Arabian Gulf. The results illustrated that this area is characterized by strong currents exceeding 1 m/s during both ebb and flood tides, driven by local water level variations. The maximum currents recorded during the study period were 1.65 and 1.36 m/s at the ebb and flood tides, respectively. Additionally, the monthly averages of ebb currents are higher than those of flood currents. The harmonic analysis results revealed that the tidal effect explained approximately 98% of the variation in water currents, with the remaining percentage due to residual currents. Among the 35 tidal components used in harmonic analysis, the M2 component was the main contributor to tidal currents variation in the area, followed by S2, K1, N2, and O1. The residual current seems to have a low effect on the currents variations in the area, with maximum values not exceeding 0.0677 and 0.058 m/s during the ebb and flood tides, respectively. The results obtained give a general view of the tidal current behavior and could be beneficial for several aspects of marine and coastal engineering as well as shipping and navigation activities in this region.
Czasopismo
Rocznik
Strony
494--502
Opis fizyczny
Bibliogr. 35 poz., fot., rys., tab., wykr.
Twórcy
  • Marine Science Center, University of Basrah, Iraq
Bibliografia
  • 1. Afshar-Kaveh, N., Nazarali, M., Pattiaratchi, C., 2020. Relationship between the Persian Gulf sea-level fluctuations and meteorological forcing. J. Mar. Sci. Eng. 8, 285. https://doi.org/10.3390/jmse8040285
  • 2. Al Senafi, F., Anis, A., 2015. Shamals and climate variability in the northern Arabian/Persian Gulf from 1973 to 2012. Int. J. Climatol. 35, 4509-4528. https://doi.org/10.1002/joc.4302
  • 3. Al-hasem, A.M., 2018. Tidal Current Behaviors and Remarkable Bathymetric Change in the South-Western Part of Khor Abdullah. Kuwait. Int. J. Mar. Env. Sci. 12 (2), 118-125.
  • 4. Al-Mahdi, A.A., Abdullahh, S.S., Husain, N.A., 2009. Some Features of the Physical Oceanography in Iraqi Marine Water. Mesopot. J. Mar. Sci. 24, 13-24.
  • 5. Al-Mahdi, A.A., Mahmood, A.B., 2010. Some Features of Tidal Currents in Khor Abdullah. North West Arabian Gulf. J. KAU: Mar. Sci. 21 (1), 162-182.
  • 6. Alosairi, Y., Imberger, J., Falconer, R.A., 2011. Mixing and flushing in the Persian Gulf (Arabian Gulf). J. Geophys. Res. 116, C03029. https://doi.org/10.1029/2010JC006769
  • 7. Alosairi, Y., Pokavanich, T., Alsulaiman, N., 2018. Three dimensional hydrodynamic modeling study of reverse estuarine circulation: Kuwait Bay. Mar. Pollut. Bull. 127, 82-96. https://doi.org/10.1016/j.marpolbul.2017.11.049
  • 8. Alothman, A., Ayhan, M., 2010. Detection of Sea Level Rise within the Arabian Gulf Using Space Based GNSS Measurements and In situ Tide Gauge data. 38th COSPAR Scientific Assembly 38, 3-7.
  • 9. Antoranz, A.M., Pelegri, J.L., Masciángoli, P., 2001. Tidal currents and mixing in the Lake Maracaibo estuarine system. Sci. Mar. 65 (Suppl. 1), 155-166. https://doi.org/10.3989/scimar.2001. 65s1155
  • 10. Bi, C., Bao, X., Ding, Y., 2019. Observed characteristics of tidal currents and mean flow in the northern Yellow Sea. J. Ocean. Limnol. 37, 461-473. https://doi.org/10.1007/s00343-019-8026-z
  • 11. Boon, J.D., 2013. Secrets of the Tide: Tide and Tidal Current Analysis and Predictions, Storm Surges and Sea Level Trends. Elsevier, 224 pp.
  • 12. Chen, Y.R., Paduan, J.D., Cook, M.S., Chuang, L.Z., Chung, Y.J., 2021. Observations of Surface Currents and Tidal Variability Off of Northeastern Taiwan from Shore-Based High Frequency Radar. Remote Sens. 13, 3438. https://doi.org/10.3390/rs13173438
  • 13. Defant, A., 1961. Physical Oceanography, vol. 1. Pergamon Press, London, 729 pp.
  • 14. Hoitink, A.J.F., Buschman, F.A., Vermeulen, B., 2009. Continuous measurements of discharge from a horizontal acoustic Doppler current profiler in a tidal river. Water Resour. Res. 45 (11), 1-3. https://doi.org/10.1029/2009WR007791
  • 15. Jin, G., Pan, H., Zhang, Q., Lv, X., Zhao, W., Gao, Y., 2018. Determination of harmonic parameters with temporal variations: An enhanced harmonic analysis algorithm and application to internal tidal currents in the south China Sea. J. Atmos. Ocean. Tech. 35 (7), 1375-1398. https://doi.org/10.1175/jtech-d-16- 0239.1
  • 16. Kämpf, J., Sadrinasab, M., 2006. The circulation of the Persian Gulf: A numerical study. Ocean Sci. 2, 27-41. https://doi.org/10.5194/os-2-27-2006
  • 17. Khedr, A.M., Abdelrahman, S.M., Alam El-Din, K.A., 2018. Currents and sea level variability of Alexandria Coast in Association with Wind Forcing. J. KAU: Mar. Sci. 28, 27-42. https://doi.org/10.4197/Mar.28-2.3
  • 18. Kowalik, Z., Marchenko, A., Brazhnikov, D., Marchenko, N., 2015. Tidal currents in the western Svalbard Fjords. Oceanologia 57 (4), 318-332. https://doi.org/10.1016/j.oceano.2015.06.003
  • 19. Lafta, A.A., 2021. Influence of atmospheric forces on sea surface fluctuations in Iraq marine water, northwest of Arabian Gulf. Arab. J. Geosci. 14, 1639. https://doi.org/10.1007/s12517-021-07874-x
  • 20. Lafta, A.A., 2022. Investigation of tidal asymmetry in the Shatt Al Arab river estuary, Northwest of Arabian Gulf. Oceanologia 64 (2), 376-386. https://doi.org/10.1016/j.oceano.2022.01.005
  • 21. Lafta, A.A., Al-Fartusi, A.J., 2022. General characteristics of surface waves in Iraq marine water, Northwest of Arabian Gulf. Arab. J. Geosci. 15, 1598. https://doi.org/10.1007/s12517-022-10884-y
  • 22. Lafta, A.A., Altaei, S.A., Al-Hashimi, N.H., 2020. Impacts of potential sea-level rise on tidal dynamics in Khor Abdullah and Khor Al-Zubair, northwest of Arabian Gulf. Earth Syst. Environ. 4, 93- 105. https://doi.org/10.1007/s41748-020-00147-9
  • 23. Madah, F., Sameer, G., 2022. Numerical Simulation of Tidal Hydrodynamics in the Arabian Gulf. Oceanologia 64 (2), 327-345. https://doi.org/10.1016/j.oceano.2022.01.002
  • 24. Najafi, H.S., 1997. Modeling tides in the Persian Gulf using dynamic nesting. Ph.D. thesis, Univ. Adelaide, South Australia.
  • 25. Poulain, P.M., Centurioni, L., 2015. Direct measurements of World Ocean tidal currents with surface drifters. J. Geophys. Res.-Oceans 120 (10), 6986-7003. https://doi.org/10.1002/2015JC010818
  • 26. Pous, S., Carton, X., Lazure, P., 2012. A Process Study of the Tidal Circulation in the Persian Gulf. Open J. Mar. Sci. 02 (04), 131- 140. https://doi.org/10.4236/ojms.2012.24016
  • 27. Ranjbar, M.H., Etemad-Shahidi, A., Kamranzad, B., 2020. Modeling the combined impact of climate change and sea-level rise on general circulation and residence time in a semi-enclosed sea. Sci. Total Environ. 740, 140073. https://doi.org/10.1016/j.scitotenv.2020.140073
  • 28. Reynolds, R.M., 1993. Physical oceanography of the Gulf, Strait of Hormuz, and the Gulf of Oman: results from the Mt Mitchell expedition. Mar. Pollut. Bull. 27, 35-59. https://doi.org/10.1016/0025-326X(93)90007-7
  • 29. Sadrinasab, M., Kämpf, J., 2004. Three-dimensional flushing times of the Persian Gulf. Geophys. Res. Lett. 31, 1-4. https://doi.org/10.1029/2004GL020425
  • 30. Shin, H.R., Lee, J.H., Kim, C.H., Yoon, J.H., Hirose, N., Takikawa, T., Cho, K., 2022. Long-term variation in volume transport of the Tsushima warm current estimated from ADCP current measurement and sea level differences in the Korea/Tsushima Strait. J. Marine Syst. 232. https://doi.org/10.1016/j.jmarsys.2022.103750
  • 31. Siddig, N.A., Al-Subhi, A.M., Alsaafani, M.A., 2019. Tide and mean sea level trend in the west coast of the Arabian Gulf from tide gauges and multi-missions satellite altimeter. Oceanologia 61 (4), 401-411. https://doi.org/10.1016/j.oceano.2019.05. 003
  • 32. Sterl, M.F., Delandmeter, P., van Sebille, E., 2020. Influence of barotropic tidal currents on transport and accumulation of floating microplastics in the global open ocean. J. Geophys. Res.-Oceans 125, e2019JC015583. https://doi.org/10. 1029/2019JC015583
  • 33. Sultan, S.A., Moamar, M.O., Elghribi, N.M., Williams, R., 2000. Sea level changes along the Suadi coast of the Arabian Gulf. Indian J. Geo-Mar. Sci. 29, 191-200. http://nopr.niscair.res.in/handle/123456789/25532
  • 34. Truong, D.D., Tri, D.Q., Don, N.C., 2021. The impact of waves and tidal currents on the sediment transport at the sea port. Civil Eng. J. 7 (10), 1634-1649.
  • 35. Zakaria, S., Al-Ansari, N., Knutsson, S., 2013. Historical and future climatic change scenarios for temperature and rainfall for Iraq. J. Civ. Eng. Archit. 7, 1574-1594. https://doi.org/10.17265/1934-7359/2013.12.012
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023). (PL)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0eec038-c2f4-469c-bde8-2028ecb9147b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.