PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Assessment of the suitability of paper chromatography for quick diagnostics of the operating condition of engine oil

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Paper chromatography is a method that allows rapid assessment of the condition and identification of fuel, water and soot contaminants in engine oil. The paper contains an analysis of the suitability of rapid paper chromatography for assessing the operating quality of engine oil. It takes into account the comparison of physicochemical parameters by classical methods with the quality of commercial paper chromatography. The presented research allowed verifying the suitability of paper chromatography for laboratory evaluation of engine oil quality. It was found that a more extensive analysis of the oil condition is possible provided that the chromatographic separation time of oil dispensed onto filter paper is increased from 1 minute to 40 minutes. Linear relationships were observed between the surface area of the stain core after 40-minute separation and selected viscosity parameters (e.g. kinematic viscosity measured at 40°C). Based on rapid paper chromatography, it was found that reasonable decisions can be made about the quality of engine oil, and thus about replacement or further use of the oil.
Rocznik
Strony
art. no. 162912
Opis fizyczny
Bibliogr. 32 poz., rys., tab.
Twórcy
  • Łukasiewicz Research Network - Institute for Sustainable Technologies Radom, Poland,
autor
  • Department of Quality and Safety of Industrial Products Institute of Quality and Product Management Cracow University of Economics, Kraków, Poland
  • Department of Power Engineering and Transportation Faculty of Production Engineering University of Life Sciences in Lublin, Poland
  • Department of Quality and Safety of Industrial Products Institute of Quality and Product Management Cracow University of Economics, Kraków, Poland
  • Department of Quality and Safety of Industrial Products Institute of Quality and Product Management Cracow University of Economics, Kraków, Poland
Bibliografia
  • 1. Abou-Ziyan H Z. Heat transfer characteristics of some oils used for engine cooling. Energy Conversion and Management 2004; 45(15–16): 2553–2569, https://doi.org/10.1016/j.enconman.2003.10.005.
  • 2. Agocs A, Budnyk S, Frauscher M et al. Comparing oil condition in diesel and gasoline engines. Industrial Lubrication and Tribology 2020; 72(8): 1033–1039, https://doi.org/10.1108/ILT-10-2019-0457.
  • 3. Agoston A, Dörr N, Jakoby B. Corrosion sensors for engine oils-laboratory evaluation and field tests. Sensors and Actuators, B: Chemical 2007; 127(1): 15–21, https://doi.org/10.1016/j.snb.2007.07.041.
  • 4. Agoston A, Schneidhofer C, Dörr N, Jakoby B. A concept of an infrared sensor system for oil condition monitoring. Elektrotechnik und Informationstechnik 2008; 125(3): 71–75, https://doi.org/10.1007/s00502-008-0506-3.
  • 5. Ali M K A, Hou X, Abdelkareem M A A. Anti-wear properties evaluation of frictional sliding interfaces in automobile engines lubricated by copper/graphene nanolubricants. Friction 2020; 8(5): 905–916, https://doi.org/10.1007/s40544-019-0308-0.
  • 6. Besser C, Steinschütz K, Dörr N et al. Impact of engine oil degradation on wear and corrosion caused by acetic acid evaluated by chassis dynamometer bench tests. Wear 2014; 317(1–2): 64–76, https://doi.org/10.1016/j.wear.2014.05.005.
  • 7. Cousseau T, Ruiz Acero J S, Sinatora A. Tribological response of fresh and used engine oils: The effect of surface texturing, roughness and fuel type. Tribology International 2016; 100: 60–69, https://doi.org/10.1016/j.triboint.2015.11.016.
  • 8. Dinesh R, Giri Prasad M J, Rishi Kumar R et al. Investigation of tribological and thermophysical properties of engine oil containing nano additives. Materials Today: Proceedings, 2016. doi:10.1016/j.matpr.2016.01.120, https://doi.org/10.1016/j.matpr.2016.01.120.
  • 9. Du Y, Wu T, Makis V. Parameter estimation and remaining useful life prediction of lubricating oil with HMM. Wear 2017; 376–377: 1227–1233, https://doi.org/10.1016/j.wear.2016.11.047.
  • 10. Du Y, Wu T, Wang L, Gong R. Investigation on on-line monitoring method for lubricating oil deterioration. Mechanics & Industry 2017; 18(4): 402–402, https://doi.org/10.1051/meca/2017022.
  • 11. Hatami M, Hasanpour M, Jing D. Recent developments of nanoparticles additives to the consumables liquids in internal combustion engines: Part II: Nano-lubricants. Journal of Molecular Liquids 2020. doi:10.1016/j.molliq.2020.114156, https://doi.org/10.1016/j.molliq.2020.114156.
  • 12. Howard K. 6 - Advanced engine oils to improve the performance of modern internal combustion engines. In Folkson R (ed): Alternative Fuels and Advanced Vehicle Technologies for Improved Environmental Performance, Woodhead Publishing: 2014: 138–164. https://doi.org/10.1533/9780857097422.1.138
  • 13. Hurtová I, Sejkorová M. Analysis of Engine Oils Using Modern Methods. Perner´s Contacts 2016; XI(4): 47–53.
  • 14. Kajdas C, Makowska M, Gradkowski M. Tribochemistry of n-hexadecane in different material systems. Lubrication Science 2006. doi:10.1002/ls.22, https://doi.org/10.1002/ls.22.
  • 15. Kumbar V, Votava J. Differences in engine oil degradation in spark-ignition and compression-ignition engine. Eksploatacja i Niezawodnosc – Maintenance and Reliability 2014; 16(4): 622–628.
  • 16. Owrang F, Mattsson H, Olsson J, Pedersen J. Investigation of oxidation of a mineral and a synthetic engine oil. Thermochimica Acta 2004; 413(1–2): 241–248, https://doi.org/10.1016/j.tca.2003.09.016.
  • 17. Peng Y, Wu T, Wang S, Peng Z. Oxidation wear monitoring based on the color extraction of on-line wear debris. Wear 2015; 332–333: 1151–1157, https://doi.org/10.1016/j.wear.2014.12.047.
  • 18. Stan C, Andreescu C, Toma M. Some aspects of the regeneration of used motor oil. Procedia Manufacturing, 2018. doi:10.1016/j.promfg.2018.03.102, https://doi.org/10.1016/j.promfg.2018.03.102.
  • 19. Suszyński Z, Świta R, Łoś J et al. Fast assessment of planar chromatographic layers quality using pulse thermovision method. Journal of Chromatography A 2014; 1373: 211–215, https://doi.org/10.1016/j.chroma.2014.11.039.
  • 20. Thapliyal P, Thakre G. Correlation study of physicochemical, rheological, and tribological parameters of engine oils. Advances in Tribology 2017. https://doi.org/10.1155/2017/1257607
  • 21. Tirmizi S T, Tirmizi S R U H, Tirmizi S A. Mid-FTIR and Atomic Absorption Spectroscopy Based Evaluation of Oxidation Tendencies of Lubricating Oils for Effective Oil and Gas Operations. International Journal of Heat and Technology 2020. doi:10.18280/ijht.380311, https://doi.org/10.18280/ijht.380311.
  • 22. Tonk R. The challenges and benefits of using carbon nano-tubes as friction modifier lubricant additives. Materials Today: Proceedings, Elsevier Ltd: 2020; 37(Part 2): 3275–3278, https://doi.org/10.1016/j.matpr.2020.09.112.
  • 23. Tuszynski W, Molenda J, Makowska M. Tribochemical conversions of zinc dialkyldithiophosphate (ZDDP) under extremely different pressure conditions. Tribology Letters, 2002. doi:10.1023/A:1020104732624, https://doi.org/10.1023/A:1020104732624.
  • 24. Voelkel A, Fall J. Chromatographic and non-chromatographic characterization of poly-α-olefins. Journal of Synthetic Lubrication 2007; 24(2): 91–100, https://doi.org/10.1002/jsl.31.
  • 25. Wakiru J M, Pintelon L, Muchiri P N, Chemweno P K. A review on lubricant condition monitoring information analysis for maintenance decision support Mechanical Systems and Signal Processing. Mechanical Systems and Signal Processing 2019; 118: 108–132, https://doi.org/10.1016/j.ymssp.2018.08.039.
  • 26. Wakiru J, Pintelon L, Chemweno P K. A lubricant condition monitoring approach for maintenance decision support-a data exploratory case study. Maintenance Forum on Maintenance and Asset Management, Centre for Industrial Management/Traffic and Infrastructure: 2017: 69–82.
  • 27. Wei L, Duan H, Jin Y et al. Motor oil degradation during urban cycle road tests. Friction 2021; 9(5): 1002–1011, https://doi.org/10.1007/s40544-020-0386-z.
  • 28. Wolak A. TBN performance study on a test fleet in real-world driving conditions using present-day engine oils. Measurement 2018; 114: 322–331, https://doi.org/10.1016/j.measurement.2017.09.044.
  • 29. Wolak A, Molenda J, Zając G, Janocha P. Identifying and modelling changes in chemical properties of engine oils by use of infrared spectroscopy. Measurement 2021; 186: 110141–110141, https://doi.org/10.1016/j.measurement.2021.110141.
  • 30. Wu T, Wu H, Du Y, Peng Z. Progress and trend of sensor technology for on-line oil monitoring. Science China Technological Sciences 2013; 56(12): 2914–2926, https://doi.org/10.1007/s11431-013-5400-5.
  • 31. Zhu J, He D, Bechhoefer E. Survey of lubrication oil condition monitoring, diagnostics, and prognostics techniques and systems. Journal of chemical science and technology 2013; 2(3): 100–115.
  • 32. Zhu J, Yoon J M, He D et al. Lubrication oil condition monitoring and remaining useful life prediction with particle filtering. International Journal of Prognostics and Health Management 2013; 4: 124–138. https://doi.org/10.1109/ICPHM.2013.6621415
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0ebeda6-f0ac-4721-9930-2061051f864f
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.