PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Methodology to improve the accuracy of determining the position of UAVS equipped with single-frequency receivers for the purposes of gathering data on aviation obstacles

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Low-altitude photogrammetric studies are often applied in detection of aviation obstacles. The low altitude of the Unmanned Aerial Vehicle (UAV) flight guarantees high spatial resolution (X, Y) of the obtained data. At the same time, due to high temporal resolution, UAVs have become an appropriate tool for gathering data about such obstacles. In order to ensure the required accuracy of orientation of the photogrammetric block, Ground Control Points (GCPs) are measured. The recently introduced UAV positioning solutions that are based on Post-Processing Kinematic (PPK) and Real Time Kinematic (RTK) are known to effectively reduce, or, according to other sources, even completely eliminate the necessity to conduct GCP measurements. However, the RTK method involves multiple limitations that result from the need to ensure continuous communication between the reference station and the rover receiver. The main challenge lies in achieving accurate orientation of the block without the need to conduct time-consuming ground measurements that are connected to signalling and measuring the GCPs. Such solution is required if the SPP code method is applied to designation the position of the UAV. The paper presents a research experiment aimed at improving the accuracy of the determination of the coordinates of UAV for the SPP method, in real time. The algorithm of the SPP method was improved with the use of IGS products.
Rocznik
Tom
Strony
83--104
Opis fizyczny
Bibliogr. 40 poz.
Twórcy
autor
  • Institute of Navigation, Polish Air Force University, Dywizjonu 303 35 Street, 08-521 Dęblin, Poland
  • Institute of Navigation, Polish Air Force University, Dywizjonu 303 35 Street, 08-521 Dęblin, Poland
  • Department of Imagery Intelligence, Faculty of Civil Engineering and Geodesy, Military University of Technology, Kaliskiego 2 Street, 00-908 Warsaw, Poland
Bibliografia
  • 1. Agüera-Vega Francisco, Fernando Carvajal-Ramírez, Patricio Martínez-Carricondo. 2017. „Assessment of photogrammetric mapping accuracy based on variation ground control points number using unmanned aerial vehicle”. Measurement 98: 221-227. DOI: https://doi.org/10.1016/j.measurement.2016.12.002.
  • 2. Almawas Mohammad, Azmi Mastura. 2022. „A review on use of GIS technology for mapping and modelling urban floods”. Journal of Hunan University (Natural Sciences) 49(02).
  • 3. Angrisano Antonio, Silvio Del Pizzo, Salvatore Gaglione, Salvatore Troisi, Mario Vultaggio, 2018. „Using local redundancy to improve GNSS absolute positioning in harsh scenario”. Acta Imeko 7(2): 16-23. DOI: https://doi.org/10.21014/acta_imeko.v7i2.538.
  • 4. Arévalo-Verjel Alba Nely, José Luis Lerma, Juan F. Prieto, José Fernández. 2022. „Estimation of the Block Adjustment Error in UAV Photogrammetric Flights in Flat Areas”. Remote Sensing 14: 2877. DOI: https://doi.org/10.3390/rs14122877.
  • 5. Ashraf Shahrukh, Priyanka Aggarwal, Praveen Damacharla, Hong Wang, Ahmad Y. Javaid, Vijay Devabhaktuni. 2018. „A low-cost solution for unmanned aerial vehicle navigation in a global positioning system–denied environment”. International Journal of Distributed Sensor Networks 14(6): 1-17. DOI: https://doi.org/10.1177/1550147718781750.
  • 6. Butowtt Jerzy, Roumuald Kaczyński. 2010. Fotogrametria. Warsaw: Military University of Technology. [In Polish: Photogrammetry.]. ISBN: 9788361486398.
  • 7. Chiang Kai-Wei, Meng-Lun Tsai, Chien-Hsun Chu. 2012. „The development of an UAV borne direct georeferenced photogrammetric platform for ground control point free applications”. Sensors 12(7): 9161-9180. DOI: https://doi.org/10.3390/s120709161.
  • 8. Ciećko Adam, Mieczysław Bakuła, Grzegorze Grunwald, Janusz Ćwiklak. 2020. „Examination of Multi-Receiver GPS/EGNOS Positioning with Kalman Filtering and Validation Based on CORS Stations”. Sensors 20(9): 2732. DOI: https://doi.org/10.3390/s20092732.
  • 9. Colpaert Alfred. 2022. „Satellite and UAV Platforms”. Remote Sensing for Geographic Information Systems, Sensors 22: 4564. DOI: https://doi.org/10.3390/s22124564.
  • 10. Congress Surya Sarat Chandra, Anand J Puppala, Clayton Treybig, Charles F Gurganus, Jim Halley. 2022. „Application of Unmanned Aerial Vehicles for Monitoring Airport Asset Surfaces”. Transportation Research Record: 03611981221115729. DOI: https:doi.org/10.1177/03611981221115729
  • 11. Daakir Mehdi, Marc Pierrot-Deseilligny, Pierre Bosser, Francis Pichard, Christian Thom, Yohann Rabot, Olivier Martin. 2017. „Lightweight UAV with on-board photogrammetry and single-frequency GPS positioning for metrology applications”. ISPRS J. Photogramm. Remote Sens. 127: 115-126. DOI: https://doi.org/10.1016/j.isprsjprs.2016.12.007
  • 12. DeWitt Bon, Paul Wolf. 2000. Elements of Photogrammetry (with Applications in GIS). 3rd ed. New York, USA: McGraw-Hill Higher Education. ISBN: 0-07-292454-3.
  • 13. Eling Christian, Markus Wieland, Christophe Hess, Lasse Klingbeil, Heiner Kuhlmann, 2015. „Development and evaluation of a UAV based mapping system for remote sensing and surveying applications”. The International Archives of the Photogrammetry, Remote Sensing and Spatial Information Sciences XL-1/W4: 233-239. DOI: https://doi.org.10.5194/isprsarchives-XL-1-W4-233-2015.
  • 14. Eurocontrol. 2021. Terrain and Obstacle Data Manual. 3rd ed. Eurocontrol: Brussels, Belgium.
  • 15. Forlani Gianfranco, Fabrizio Diotri, Umberto Morra Di Cella, Riccardo Roncella. 2020. „UAV block georeferencing and control by on-board gnss data”. The International Archives of Photogrammetry, Remote Sensing and Spatial Information Sciences 43: 9-16. DOI: htpps://doi.org/10.5194/isprs-archives-XLIII-B2-2020-9-2020.
  • 16. Fryer John, Harvey Mitchell, Jim Chandler. 2007. Applications of 3D measurement from images. Dunbeath, UK: Whittles. ISBN: 978-1-904445-63-0.
  • 17. Gao Y., 2008. „GNSS biases, their effect and calibration”. In IGS Workshop: 24. Natoional Geographic Survey. 2-6 June, Miami Beach, USA.
  • 18. Ge Yulong, Feng Zhou, Baoqi Sun, Shengli Wang, Bo Shi. 2017. „The Impact of Satellite Time Group Delay and Inter-Frequency Differential Code Bias Corrections on Multi-GNSS Combined Positioning”. Sensors 17(3): 602. DOI: https://doi.org/10.3390/s17030602.
  • 19. Harwin Steve, Arco Lucieer. 2012. „Assessing the accuracy of georeferenced point clouds produced via multi-view stereopsis from Unmanned Aerial Vehicle (UAV) imagery”. Remote Sens. 4: 1573-1599. DOI: https://doi.org.10.3390/rs4061573.
  • 20. Hosseinpoor Ahmad Reza, Farhad Samadzadegan, F. Dadras Javan. 2016. „Pricise target geolocation and tracking based on UAV video imagery”. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences XLI-B6: 243-249. DOI: https://doi.org/10.5194/isprs-archives-XLI-B6-243-2016.
  • 21. IGS. „Products”. Available at: https://igs.org/products/#about.
  • 22. Kaniewski Piotr. 2006. „Aircraft Positioning with INS/GNSS Integrated System. Molecular and Quantum Acoustics 27: 149-168. ISSN: 1731-8505.
  • 23. Kaniewski Piotr, Rafal Gil, Stanisław Konatowski, 2016. „Algorithms of position and velocity estimation in GPS receivers”. Annual of Navigation 23: 53-68. DOI: https://doi.org/10.1515/aon-2016-0004.
  • 24. Le Anh Quan, Christian Tiberius. 2007 „Single-frequency precise point positioning with optimal filtering”. GPS Solutions 11(1): 61-69. DOI: https://doi.org/10.1007/s10291-006-0033-9.
  • 25. Luhmann Thomas, Stuart Robson, 2011. Close Range Photogrammetry: Principles, Methods and Applications. Cdr ed. Dunbeath, UK: Whittles. ISBN: 978-1-84995-057-2.
  • 26. Mancini Francesco, Marco Dubbini, Mario Gattelli, Francesco Stecchi, Stefano Fabbri, Giovanni Gabbianelli. 2013. „Using Unmanned Aerial Vehicles (UAV) for High-Resolution Reconstruction of Topography: The Structure from Motion Approach on Coastal Environments”. Remote Sens. 5: 6880-6898. DOI: https://doi.org.10.3390/rs5126880.
  • 27. RTKLIB: An Open Source Program. „RTKLIB ver. 2.4.2 Manual, Package for GNSS Positioning”. Available at: http://www.rtklib.com/prog/manual_2.4.2.pdf.
  • 28. RTKLIB Website. „ RTKLIB: An Open Source Program Package for GNSS Positioning”. Available at: http://rtklib.com/.
  • 29. Santerre Rock, Lin Pan, Changsheng Cai, Jianjun Zhu. 2014. „Single Point Positioning Using GPS, GLONASS and BeiDou Satellites”. Positioning 5: 107-114. DOI: https://doi.org.10.4236/pos.2014.54013.
  • 30. 30. Sanz-Ablanedo Enoc, Jim H. Chandler, José Ramón Rodríguez-Pérez, Celestino Ordóñez. 2018. „Accuracy of unmanned aerial vehicle (UAV) and SfM photogrammetry survey as a function of the number and location of ground control points used”. Remote Sensing 10(10):1606. DOI: https://doi.org/10.3390/rs10101606.
  • 31. Schaer S., 1999. „Mapping and predicting the Earth’s ionosphere using Global Positioning System”. PhD thesis. Berne: University of Berne.
  • 32. Scilab Website. Available at: https://www.scilab.org/.
  • 33. Shahbazi Mozhdeh, Gunho Sohn, Jérôme Théau, Patrick Menard. 2015. „Development and evaluation of a UAV-photogrammetry system for precise 3D environmental modeling”. Sensors 15: 27493-27524. DOI: https://doi.org/10.3390/s151127493.
  • 34. Sharma Himanshu, Andreas Schütz, Thomas Pany. 2018. „Preliminary analysis of the RTK positioning using Android GNSS Raw Measurements and Application Feasibility for the Trajectory mapping using UAV’s”. In: The 31st International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2018): 432-444. The Institute of Navigation, Manassas. 24-28 September 2018, Miami, Florida, USA. ISBN: 0-936406-10-0.
  • 35. Tahar Khairul Nizam. 2013. „An evaluation on different number of ground control points in unmanned aerial vehicle photogrammetric block”. Int. Arch. Photogramm. Remote Sens. Spat. Inf. Sci. 40: 93-98. DOI: https://doi.org/10.5194/isprsarchives-XL-2-W2-93-2013.
  • 36. Tahar Khairul Nizam, Suryani Kamarudin. 2016. „UAV onboard GPS in positioning determination”. International Archives of the Photogrammetry, Remote Sensing & Spatial Information Sciences 41: 1037-1042. DOI: https://doi.org/ 10.5194/isprs-archives-XLI-B1-1037-2016.
  • 37. Taro, S., Y. Takahashi, Y. Amano. 2016. „Precise UAV Position and Attitude Estimation by Multiple GNSS Receivers for 3D Mapping”. In: The 29th International Technical Meeting of the Satellite Division of The Institute of Navigation (ION GNSS+ 2016): 1455-1464. The Institute of Navigation, Manassas.12-16 September, Portland, Oregon. ISBN: 0-936406-12-7
  • 38. Ueno M., T. Nimura, T. Fujiwara, K. Nonaka. 1997. „Evaluation of RTK-OTF positioning system for free running manoeuvrability test of a model ship”. In: Oceans '97. MTS/IEEE Conference Proceedings 2: 1120-1125. DOI: 10.1109/OCEANS.1997.624149.
  • 39. Wang Shizhuang, Xingqun Zhan, Yawei Zhai, Cheng Chi, Jiawen Shen. 2021. „Highly reliable relative navigation for multi-UAV formation flight in urban environments”. Chin. J. Aeronaut. 34(7): 257-270. DOI: https://doi.org/10.1016/j.cja.2020.05.022.
  • 40. Wierzbicki Damian, Michał Kędzierski, Anna Sekrecka. 2019. „A Method for Dehazing Images Obtained from Low Altitudes during High-Pressure Fronts”. Remote Sensing 12(1): 25. DOI: https://doi.org.10.3390/rs12010025.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0eaa285-74e4-4560-8837-3bd868646451
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.