Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Grey Wolf Optimizer (GWO) is a new meta-heuristic search algorithm inspired by the social behavior of leadership and the hunting mechanism of grey wolves. GWO algorithm is prominent in terms of finding the optimal solution without getting trapped in premature convergence. In the original GWO, half of the iterations are dedicated to exploration and the other half are devoted to exploitation, overlooking the impact of right balance between these two to guarantee an accurate approximation of global optimum. To overcome this shortcoming, an Enhanced Grey Wolf Optimization (EGWO) algorithm with a better hunting mechanism is proposed, which focuses on proper balance between exploration and exploitation that leads to an optimal performance of the algorithm and hence promising candidate solutions are generated. To verify the performance of our proposed EGWO algorithm, it is benchmarked on twenty-five benchmark functions with diverse complexities. It is then employed on range based node localization problem in wireless sensor network to demonstrate its applicability. The simulation results indicate that the proposed algorithm is able to provide superior results in comparison with some wellknown algorithms. The results of the node localization problem indicate the effectiveness of the proposed algorithm in solving real world problems with unknown search spaces.
Wydawca
Czasopismo
Rocznik
Tom
Strony
235--264
Opis fizyczny
Binbliogr. 57 poz., rys., tab., wykr.
Twórcy
autor
- Research Scholar, DAV University Jalandhar, Punjab, India
autor
- DAV University Jalandhar, Punjab, India
Bibliografia
- [1] Kulkarni RV, Forster A, Venayagamoorthy GK. Computational intelligence in wireless sensor networks: A survey. IEEE communications surveys & tutorials, 2011;13(1):68–96. doi:10.1109/SURV.2011.040310.00002.
- [2] Yang X. Introduction to mathematical optimization. Cambridge International Science Publishing, 2008.
- [3] Talbi EG. Metaheuristics: from design to implementation, volume 74. John Wiley & Sons, 2009. ISBN:978-0-470-27858-1.
- [4] Yan X, Zhang C, Luo W, Li W, Chen W, Liu H. Solve traveling salesman problem using particle swarm optimization algorithm. International Journal of Computer Science, 2012;9:264–271. ISSN: 2348-4845.
- [5] Zomaya AY, Teh YH. Observations on using genetic algorithms for dynamic load-balancing. IEEE transactions on parallel and distributed systems, 2001;12(9):899–911. doi:10.1109/71.954620.
- [6] Yang XS. Nature-inspired metaheuristic algorithms. Luniver press, 2010. ISBN:1905986289.
- [7] Shi Y, et al. Particle swarm optimization: developments, applications and resources. In: evolutionary computation, 2001. Proceedings of the 2001 Congress on, volume 1. IEEE, 2001 pp. 81–86. doi:10.1109/CEC.2001.934374.
- [8] Zhang Y, Wang S, Ji G. A comprehensive survey on particle swarm optimization algorithm and its applications. Mathematical Problems in Engineering, 2015. URL http://dx.doi.org/10.1155/2015/931256.
- [9] Yang XS. Firefly algorithm, Levy flights and global optimization. In: Research and development in intelligent systems XXVI, pp. 209–218. Springer, 2010. doi:10.1007/978-1-84882-983-1_15.
- [10] Arora S, Singh S. Performance Research on Firefly Optimization Algorithm with Mutation. In: International Conference, Computing & Systems. 2014.
- [11] Arora S, Singh S. A conceptual comparison of firefly algorithm, bat algorithm and cuckoo search. In: Control Computing Communication & Materials (ICCCCM), 2013 International Conference on. IEEE, 2013 pp. 1–4. doi:10.1109/ICCCCM.2013.6648902.
- [12] Kalra S, Arora S. Firefly Algorithm Hybridized with Flower Pollination Algorithm for Multimodal Functions. In: Proceedings of the International Congress on Information and Communication Technology. Springer, 2016 pp. 207–219. doi:10.1007/978-981-10-0767-5_23.
- [13] Yang XS. Flower pollination algorithm for global optimization. In: International Conference on Unconventional Computing and Natural Computation. Springer, 2012 pp. 240–249. doi:10.1007/978-3-642-32894-7_27.
- [14] Yang XS, Deb S. Cuckoo search via Levy flights. In: Nature & Biologically Inspired Computing, 2009. NaBIC 2009. World Congress on. IEEE, 2009 pp. 210–214. doi:10.1109/NABIC.2009.5393690.
- [15] Dorigo M, Birattari M, Stutzle T. Ant colony optimization. IEEE computational intelligence magazine, 2006;1(4):28–39. doi:10.1109/MCI.2006.329691.
- [16] Arora S, Singh S. Butterfly algorithm with Levy Flights for global optimization. In: Signal Processing, Computing and Control (ISPCC), 2015 International Conference on. IEEE, 2015 pp. 220–224. doi:10.1109/ISPCC.2015.7375029.
- [17] Arora S, Singh S. An improved butterfly optimization algorithm with chaos. Journal of Intelligent & Fuzzy Systems, 2017;32(1):1079–1088. doi:10.3233/JIFS-16798.
- [18] Dasgupta D, Michalewicz Z. Evolutionary algorithms in engineering applications. Springer Science & Business Media, 2013.
- [19] Erol OK, Eksin I. A new optimization method: big bang–big crunch. Advances in Engineering Software, 2006;37(2):106–111. doi:10.1016/j.advengsoft.2005.04.005.
- [20] Rashedi E, Nezamabadi-Pour H, Saryazdi S. GSA: a gravitational search algorithm. Information sciences, 2009;179(13):2232–2248. doi:10.1016/j.ins.2009.03.004.
- [21] Hansen N, Müller SD, Koumoutsakos P. Reducing the time complexity of the derandomized evolution strategy with covariance matrix adaptation (CMA-ES). Evolutionary computation, 2003;11(1):1–18. doi:10.1162/106365603321828970.
- [22] Brest J, Zamuda A, Fister I, Boskovic B. Some improvements of the self-adaptive jde algorithm. In: Differential Evolution (SDE), 2014 IEEE Symposium on. IEEE, 2014 pp. 1–8. doi:10.1109/SDE.2014.7031537.
- [23] Davis L. Genetic algorithms and simulated annealing. 1987.
- [24] Xi B, Liu Z, Raghavachari M, Xia CH, Zhang L. A smart hill-climbing algorithm for application server configuration. In: Proceedings of the 13th international conference on World Wide Web. ACM, 2004 pp. 287–296. doi:10.1145/988672.988711.
- [25] Zhang Y, Agarwal P, Bhatnagar V, Balochian S, Yan J. Swarm intelligence and its applications. The Scientific World Journal, 2013. URL http://dx.doi.org/10.1155/2013/528069.
- [26] Mirjalili S, Mirjalili SM, Lewis A. Grey wolf optimizer. Advances in Engineering Software, 2014;69:46–61. URL https://doi.org/10.1016/j.advengsoft.2013.12.007.
- [27] Sharma Y, Saikia LC. Automatic generation control of a multi-area ST–Thermal power system using Grey Wolf Optimizer algorithm based classical controllers. International Journal of Electrical Power & Energy Systems, 2015;73:853–862. doi:10.1016/j.ijepes.2015.06.005.
- [28] El-Fergany AA, Hasanien HM. Single and multi-objective optimal power flow using grey wolf optimizer and differential evolution algorithms. Electric Power Components and Systems, 2015;43(13):1548–1559. URL http://dx.doi.org/10.1080/15325008.2015.1041625.
- [29] Noshadi A, Shi J, Lee WS, Shi P, Kalam A. Optimal PID-type fuzzy logic controller for a multi-input multi-output active magnetic bearing system. Neural Computing and Applications, 2016;27(7):2031–2046. doi:10.1007/s00521-015-1996-7.
- [30] Sulaiman MH, Mustaffa Z, Mohamed MR, Aliman O. Using the gray wolf optimizer for solving optimal reactive power dispatch problem. Applied Soft Computing, 2015;32:286–292. doi:10.1016/j.asoc.2015.03.041.
- [31] Medjahed S, Saadi TA, Benyettou A, Ouali M. Gray Wolf Optimizer for hyperspectral band selection. Applied Soft Computing, 2016;40:178–186. doi:10.1016/j.asoc.2015.09.045.
- [32] Zhang Y, Wu L, Wang S, Huo Y. Chaotic artificial bee colony used for cluster analysis. In: Intelligent Computing and Information Science, pp. 205–211. Springer, 2011. doi:10.1007/978-3-642-18129-0_33.
- [33] Zhang Y, Wu L. A hybrid TS-PSO optimization algorithm. Journal of Convergence Information Technology, 2011;6(5):169–174. doi:10.4156/jcit.vol6.issue5.18.
- [34] Cui Z, Cai X. Integral particle swarm optimization with dispersed accelerator information. Fundamenta Informaticae, 2009;95(4):427–447. doi:10.3233/FI-2009-158.
- [35] Zhang Y, Wu X, Lu S, Wang H, Phillips P, Wang S. Smart detection on abnormal breasts in digital mammography based on contrast-limited adaptive histogram equalization and chaotic adaptive real-coded biogeography-based optimization. Simulation, 2016;92(9):873–885. doi:10.1177/0037549716667834.
- [36] Wang S, Li P, Chen P, Phillips P, Liu G, Du S, Zhang Y. Pathological Brain Detection via Wavelet Packet Tsallis Entropy and Real-Coded Biogeography-based Optimization. Fundamenta Informaticae, 2017;151(1-4):275–291. doi: 10.3233/FI-2017-1492.
- [37] Wang S, Zhang Y, Dong Z, Du S, Ji G, Yan J, Yang J, Wang Q, Feng C, Phillips P. Feed-forward neural network optimized by hybridization of PSO and ABC for abnormal brain detection. International Journal of Imaging Systems and Technology, 2015;25(2):153–164. doi:10.1002/ima.22132.
- [38] Lu C, Xiao S, Li X, Gao L. An effective multi-objective discrete grey wolf optimizer for a real-world scheduling problem in welding production. Advances in Engineering Software, 2016;99:161–176. doi:10.1016/j.advengsoft.2016.06.004.
- [39] Lu C, Gao L, Li X, Xiao S. A hybrid multi-objective grey wolf optimizer for dynamic scheduling in a real-world welding industry. Engineering Applications of Artificial Intelligence, 2017;57:61–79. URL https://doi.org/10.1016/j.engappai.2016.10.013.
- [40] Precup RE, David RC, Petriu EM. Grey wolf optimizer algorithm-based tuning of fuzzy control systems with reduced parametric sensitivity. IEEE Transactions on Industrial Electronics, 2017;64(1):527–534. doi:10.1109/TIE.2016.2607698.
- [41] Jayakumar N, Subramanian S, Ganesan S, Elanchezhian E. Grey wolf optimization for combined heat and power dispatch with cogeneration systems. International Journal of Electrical Power & Energy Systems, 2016;74:252–264. URL https://doi.org/10.1016/j.ijepes.2015.07.031.
- [42] Mittal N, Singh U, Sohi BS. Modified grey wolf optimizer for global engineering optimization. Applied Computational Intelligence and Soft Computing, 2016; pp. 1–16. URL http://dx.doi.org/10.1155/2016/7950348.
- [43] Muangkote N, Sunat K, Chiewchanwattana S. An improved grey wolf optimizer for training q-Gaussian Radial Basis Functional-link nets. In: Computer Science and Engineering Conference (ICSEC), 2014 International. IEEE, 2014 pp. 209–214. doi:10.1109/ICSEC.2014.6978196.
- [44] Kohli M, Arora S. Chaotic grey wolf optimization algorithm for constrained optimization problems. Journal of Computational Design and Engineering, 2017. URL https://doi.org/10.1016/j.jcde.2017.02.005.
- [45] Arora S, Singh S. An Improved Butterfly Optimization Algorithm for Global Optimization. Advanced Science, Engineering and Medicine, 2016;8(9):711–717. URL https://doi.org/10.1166/asem.2016.1904.
- [46] Arora S, Singh S. An Effective Hybrid Butterfly Optimization Algorithm with Artificial Bee Colony for Numerical Optimization. International Journal of Interactive Multimedia and Artificial Intelligence, 2017;4(4):14–21. doi:10.9781/ijimai.2017.442.
- [47] Gopakumar A, Jacob L. Performance of some metaheuristic algorithms for localization in wireless sensor networks. International Journal of Network Management, 2009;19(5):355–373. doi:10.1002/nem.714.
- [48] Jadon SS, Bansal JC, Tiwari R. Escalated convergent artificial bee colony. Journal of Experimental & Theoretical Artificial Intelligence, 2016;28(1-2):181–200. URL http://dx.doi.org/10.1080/0952813X.2015.1020523.
- [49] Karaboga D, Akay B. A comparative study of artificial bee colony algorithm. Applied mathematics and computation, 2009;214(1):108–132. doi:10.1016/j.amc.2009.03.090.
- [50] James J, Li VO. A social spider algorithm for global optimization. Applied Soft Computing, 2015;30:614–627. doi:10.1016/j.asoc.2015.02.014.
- [51] Yick J, Mukherjee B, Ghosal D. Wireless sensor network survey. Computer networks, 2008;52(12):2292–2330. doi:10.1016/j.comnet.2008.04.002.
- [52] Alrajeh NA, Bashir M, Shams B. Localization techniques in wireless sensor networks. International Journal of Distributed Sensor Networks, 2013.
- [53] Singh P, Tripathi B, Singh NP. Node localization in wireless sensor networks. International journal of computer science and information technologies, 2011;2(6):2568–2572. doi:10.1109/IMTC.2011.5944076.
- [54] Sun W, Su X. Wireless sensor network node localization based on genetic algorithm. In: Communication Software and Networks (ICCSN), 2011 IEEE 3rd International Conference on. IEEE, 2011 pp. 316–319.
- [55] Moussa A, El-Sheimy N. Localization of wireless sensor network using bees optimization algorithm. In: Signal Processing and Information Technology (ISSPIT), 2010 IEEE International Symposium on. IEEE, 2010 pp. 478–481. doi:10.1109/ISSPIT.2010.5711760.
- [56] Kumar A, Khosla A, Saini JS, Singh S. Meta-heuristic range based node localization algorithm for wireless sensor networks. In: Localization and GNSS (ICL-GNSS), 2012 International Conference on. IEEE, 2012 pp. 1–7. doi:10.1109/ICL-GNSS.2012.6253135.
- [57] Arora S, Singh S. Node Localization in Wireless Sensor Networks Using Butterfly Optimization Algorithm. Arabian Journal for Science and Engineering. 2017, pp. 1–11. doi:10.1007/s13369-017-2471-9.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0e108c5-0762-4bb8-9886-fd19bf816b8f