PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
  • Sesja wygasła!
Tytuł artykułu

Multimodal breast cancer hybrid explainable computer-aided diagnosis using medical mammograms and ultrasound Images

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Breast cancer is a prevalent global disease where early detection is crucial for effective treatment and reducing mortality rates. To address this challenge, a novel Computer-Aided Diagnosis (CAD) framework leveraging Artificial Intelligence (AI) techniques has been developed. This framework integrates capabilities for the simultaneous detection and classification of breast lesions. The AI-based CAD framework is meticulously structured into two pipelines (Stage 1 and Stage 2). The first pipeline (Stage 1) focuses on detectable cases where lesions are identified during the detection task. The second pipeline (Stage 2) is dedicated to cases where lesions are not initially detected. Various experimental scenarios, including binary (benign vs. malignant) and multiclass classifications based on BI-RADS scores, were conducted for training and evaluation. Additionally, a verification and validation (V&V) scenario was implemented to assess the reliability of the framework using unseen multimodal datasets for both binary and multi-class tasks. For the detection tasks, the recent AI detectors like YOLO (You Only Look Once) variants were fine-tuned and optimized to localize breast lesions. For classification tasks, hybrid AI models incorporating ensemble convolutional neural networks (CNNs) and the attention mechanism of Vision Transformers were proposed to enhance prediction performance. The proposed AI-based CAD framework was trained and evaluated using various multimodal ultrasound datasets (BUSI and US2) and mammogram datasets (MIAS, INbreast, real private mammograms, KAU-BCMD, and CBIS-DDSM), either individually or in merged forms. Visual t-SNE techniques were applied to visually harmonize data distributions across ultrasound and mammogram datasets for effective various datasets merging. To generate visually explainable heatmaps in both pipelines (stages 1 and 2), Grad-CAM was utilized. These heatmaps assisted in finalizing detected boxes, especially in stage 2 when the AI detector failed to automatically detect breast lesions. The highest evaluation metrics achieved for merged dataset (BUSI, INbreast, and MIAS) were 97.73% accuracy and 97.27% mAP50 in the first pipeline. In the second pipeline, the proposed CAD achieved 91.66% accuracy with 95.65% mAP50 on MIAS and 95.65% accuracy with 96.10% mAP50 on the merged dataset (INbreast and MIAS). Meanwhile, exceptional performance was demonstrated using BI-RADS scores, achieving 87.29% accuracy, 91.68% AUC, 86.72% mAP50, and 64.75% mAP50-95 on a combined dataset of INbreast and CBIS-DDSM. These results underscore the practical significance of the proposed CAD framework in automatically annotating suspected lesions for radiologists.
Twórcy
  • School of Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
  • Faculty of Administrative and Computer Sciences, University of Albaydha, Albaydha, Yemen
  • School of Computational Sciences, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
  • Faculty of Administrative and Computer Sciences, University of Albaydha, Albaydha, Yemen
  • Department of Information Technology, College of Computers and Information Technology, Taif University, PO Box 11099, 21944, Taif, Saudi Arabia
  • Department of Artificial Intelligence and Data Science, College of AI Convergence, Daeyang AI Center, Sejong University, Seoul 05006, Republic of Korea
  • School of Media Studies, Swami Ramanand Teerth Marathwada University, Nanded 431606, Maharashtra, India
Bibliografia
  • [1] Al-Tam RM. Diversifying medical imaging of breast lesions. sapientia.ualg.pt, Faro, Portugal: University of Algarve; 2015. Master’s Thesis.
  • [2] Al-Tam RM, Narangale SM. Breast cancer detection and diagnosis using machine learning: a survey. J Sci Res 2021;65(5):265-85.
  • [3] Stachs A, Stubert J, Reimer T, Hartmann S. Benign breast disease in women. Dtsch Arztebl Int 2019;116(33-34):565.
  • [4] Giaquinto AN, et al. Breast cancer statistics, 2022. CA Cancer J Clin 2022;72(6): 524-41.
  • [5] Siddiqui MKJ, Anand M, Mehrotra PK, Sarangi R, Mathur N. Biomonitoring of organochlorines in women with benign and malignant breast disease. Environ Res 2005;98(2):250-7.
  • [6] Ardakani AA, Mohammadi A, Mirza-Aghazadeh-Attari M, Acharya UR. An open-access breast lesion ultrasound image database: applicable in artificial intelligence studies. Comput Biol Med 2023;152:106438.
  • [7] Al-Dhabyani W, Gomaa M, Khaled H, Fahmy A. Dataset of breast ultrasound images. Data Br 2020;28:104863. https://doi.org/10.1016/j.dib.2019.104863.
  • [8] Moreira IC, Amaral I, Domingues I, Cardoso A, Cardoso MJ, Cardoso JS. INbreast. Acad Radiol Feb. 2012;19(2):236-48. https://doi.org/10.1016/j.acra.2011.09.014.
  • [9] J. Suckling et al., “Mammographic image analysis society (mias) database v1. 21,” 2015.
  • [10] D. J. Bell and Y. Weerakkody, “Breast imaging-reporting and data system (BIRADS) | Radiology Reference Article | Radiopaedia.org,” RADIOPAEDIA, 2013. https://radiopaedia.org/articles/breast-imaging-reporting-and-data-system-birads (accessed Jul. 09, 2020).
  • [11] Al-Antari MA, et al. An automatic computer-aided diagnosis system for breast cancer in digital mammograms via deep belief network. J Med Biol Eng 2018;38 (3):443-56.
  • [12] R. M. Al-Tam et al., “A Hybrid Workflow of Residual Convolutional Transformer Encoder for Breast Cancer Classification Using Digital X-ray Mammograms,” Biomedicines, vol. 10, no. 11, 2022, doi: 10.3390/biomedicines10112971.
  • [13] Al-Hejri AM, Al-Tam RM, Fazea M, Sable AH, Lee S, Al-antari MA. ETECADx: ensemble self-attention transformer encoder for breast cancer diagnosis using full-field digital X-ray breast images. Diagnostics Dec. 2022;13(1):89. https://doi.org/10.3390/diagnostics13010089.
  • [14] Al-Antari MA, Han S-M, Kim T-S. Evaluation of deep learning detection and classification towards computer-aided diagnosis of breast lesions in digital X-ray mammograms. Comput Methods Programs Biomed 2020;196:105584.
  • [15] Zou Z, Chen K, Shi Z, Guo Y, Ye J. Object detection in 20 years: a survey. Proc IEEE 2023. https://doi.org/10.48550/arXiv.1905.05055.
  • [16] M. M. Al Zorgani, I. Mehmood, and H. Ugail, “Deep yolo-based detection of breast cancer mitotic-cells in histopathological images,” in Proceedings of 2021 International Conference on Medical Imaging and Computer-Aided Diagnosis (MICAD 2021) Medical Imaging and Computer-Aided Diagnosis, 2022, pp. 335-342.
  • [17] Aly GH, Marey M, El-Sayed SA, Tolba MF. YOLO based breast masses detection and classification in full-field digital mammograms. Comput Methods Programs Biomed 2021;200:105823.
  • [18] Chen J-L, et al. A YOLO-based AI system for classifying calcifications on spot magnification mammograms. Biomed Eng Online 2023;22(1):54.
  • [19] Prinzi F, Insalaco M, Orlando A, Gaglio S, Vitabile S. a yolo-based model for breast cancer detection in mammograms. Cognit Comput 2023:1-14.
  • [20] Su Y, Liu Q, Xie W, Hu P. YOLO-LOGO: A transformer-based YOLO segmentation model for breast mass detection and segmentation in digital mammograms. Comput Methods Programs Biomed 2022;221:106903.
  • [21] S. Ruban, M. M. Jabeer, and R. S. Basti, “Improvising Breast Cancer detection using CNN, VGG and SSD Algorithms,” in 2022 Third International Conference on Intelligent Computing Instrumentation and Control Technologies (ICICICT), 2022, pp. 1772-1776.
  • [22] Ibrokhimov B, Kang J-Y. Two-stage deep learning method for breast cancer detection using high-resolution mammogram images. Appl Sci 2022;12(9):4616.
  • [23] Zhang Y, et al. Automatic detection and segmentation of breast cancer on MRI using mask R-CNN trained on non-fat-sat images and tested on fat-sat images. Acad Radiol 2022;29:S135-44.
  • [24] G. Hamed, M. A. E.-R. Marey, S. E.-S. Amin, and M. F. Tolba, “The mass size effect on the breast cancer detection using 2-levels of evaluation,” in International Conference on Advanced Intelligent Systems and Informatics, 2020, pp. 324-335.
  • [25] Hamed G, Marey M, Amin SE, Tolba MF. Automated breast cancer detection and classification in full field digital mammograms using two full and cropped detection paths approach. IEEE Access 2021;9:116898-913.
  • [26] Oza P, Sharma P, Patel S, Kumar P. Deep convolutional neural networks for computer-aided breast cancer diagnostic: a survey. Neural Comput Appl 2022: 1-22.
  • [27] Yan Y, Conze P-H, Lamard M, Quellec G, Cochener B, Coatrieux G. Towards improved breast mass detection using dual-view mammogram matching. Med Image Anal 2021;71:102083.
  • [28] Lin G, Chen M, Tan M, Chen L, Chen J. A dual-stage transformer and MLP-based network for breast ultrasound image segmentation. Biocybern Biomed Eng 2023; 43(4):656-71.
  • [29] Yan Y, Conze P-H, Quellec G, Lamard M, Cochener B, Coatrieux G. Two-stage multi-scale breast mass segmentation for full mammogram analysis without user intervention. Biocybern Biomed Eng 2021;41(2):746-57.
  • [30] R. Mart\’\i et al., “Lesion detection in digital breast tomosynthesis: method, experiences and results of participating to the DBTex challenge,” in 16th International Workshop on Breast Imaging (IWBI2022), 2022, vol. 12286, pp. 216-221.
  • [31] Y. J. Gaona and V. Lakshminarayanan, “DenseNet for Breast Tumor Classification in Mammographic Images,” in Bioengineering and Biomedical Signal and Image Processing: First International Conference, BIOMESIP 2021, Meloneras, Gran Canaria, Spain, July 19-21, 2021, Proceedings, 2021, vol. 12940, p. 166.
  • [32] Kim J, Sung J-Y, Park S. Comparison of Faster-RCNN, YOLO, and SSD for real-time vehicle type recognition. In: in 2020 IEEE international conference on consumer electronics-Asia (ICCE-Asia); 2020. p. 1-4.
  • [33] Ukwuoma CC, et al. A hybrid explainable ensemble transformer encoder for pneumonia identification from chest X-ray images. J Adv Res 2022.
  • [34] Thuy MBH, Hoang VT. Fusing of deep learning, transfer learning and gan for breast cancer histopathological image classification. In: in International Conference on Computer Science, Applied Mathematics and Applications; 2019. p. 255-66.
  • [35] Savelli B, Bria A, Molinara M, Marrocco C, Tortorella F. A multi-context CNN ensemble for small lesion detection. Artif Intell Med 2020;103:101749.
  • [36] Y. Sahu, A. Tripathi, R. K. Gupta, P. Gautam, R. K. Pateriya, and A. Gupta, “A CNN-SVM based computer aided diagnosis of breast Cancer using histogram Kmeans segmentation technique,” Multimed Tools Appl pp. 1-21, 2022.
  • [37] Samee NA, et al. A hybrid deep transfer learning of CNN-based LR-PCA for breast lesion diagnosis via medical breast mammograms. Sensors 2022;22(13):4938.
  • [38] A. Vaswani et al., “Attention is all you need,” Adv. Neural Inf. Process. Syst., vol. 30, 2017, [Online]. Available: https://proceedings.neurips.cc/paper/2017/file/3f5ee243547dee91fbd053c1c4a845aa-Paper.pdf.
  • [39] N. Abdel Samee et al., “Using Deep DenseNet with Cyclical Learning Rate to Classify Leukocytes for Leukemia Identification,” Front Oncol vol. 13, p. 1230434.
  • [40] Saad M, Ullah M, Afridi H, Cheikh FA, Sajjad M. BreastUS: Vision Transformer for Breast Cancer Classification Using Breast Ultrasound Images. In: in 2022 16th International Conference on Signal-Image Technology & Internet-Based Systems (SITIS); 2022. p. 246-53.
  • [41] Gheflati B, Rivaz H. Vision transformers for classification of breast ultrasound images. In: in 2022 44th Annual International Conference of the IEEE Engineering in Medicine & Biology Society (EMBC); 2022. p. 480-3.
  • [42] Alotaibi A, et al. ViT-DeiT: An Ensemble Model for Breast Cancer Histopathological Images Classification. In: in 2023 1st International Conference on Advanced Innovations in Smart Cities (ICAISC); 2023. p. 1-6.
  • [43] Qu X, et al. A VGG attention vision transformer network for benign and malignant classification of breast ultrasound images. Med Phys 2022.
  • [44] Ayana G, et al. Vision-Transformer-Based Transfer Learning for Mammogram Classification. Diagnostics Jan. 2023;13(2):178. https://doi.org/10.3390/diagnostics13020178.
  • [45] Wen X, Guo X, Wang S, Lu Z, Zhang Y. Breast cancer diagnosis: A systematic review. Biocybern Biomed Eng 2024;44(1):119-48.
  • [46] Hou R, et al. Anomaly detection of calcifications in mammography based on 11,000 negative cases. IEEE Trans Biomed Eng 2021.
  • [47] Melekoodappattu JG, Dhas AS, Kandathil BK, Adarsh KS. Breast cancer detection in mammogram: combining modified CNN and texture feature based approach. J Ambient Intell Humaniz Comput 2022:1-10.
  • [48] Pillai A, Nizam A, Joshee M, Pinto A, Chavan S. “Breast Cancer Detection in Mammograms Using Deep Learning”, in Applied Information Processing Systems. Springer 2022:121-7.
  • [49] Mahmood T, Li J, Pei Y, Akhtar F, Rehman MU, Wasti SH. Breast lesions classifications of mammographic images using a deep convolutional neural network-based approach. PLoS One 2022;17(1):e0263126.
  • [50] Sannasi Chakravarthy SR, Bharanidharan N, Rajaguru H. Multi-deep CNN based experimentations for early diagnosis of breast cancer. IETE J Res 2022:1-16.
  • [51] Roy A, Singh BK, Banchhor SK, Verma K. Segmentation of malignant tumours in mammogram images: a hybrid approach using convolutional neural networks and connected component analysis. Expert Syst 2022;39(1):e12826.
  • [52] Pawar SD, Sharma KK, Sapate SG, Yadav GY. Segmentation of pectoral muscle from digital mammograms with depth-first search algorithm towards breast density classification. Biocybern Biomed Eng 2021;41(3):1224-41.
  • [53] Rashid MHO, Shahriyar SM, Shamrat FMJM, Mahbub T, Tasnim Z, Ahmed MZ. A Convolutional Neural Network Based Classification Approach for Breast Cancer Detection. In: in 2023 7th International Conference on Trends in Electronics and Informatics (ICOEI); 2023. p. 761-8.
  • [54] Ahmed M, Islam MR. A combined feature-vector based multiple instance learning convolutional neural network in breast cancer classification from histopathological images. Biomed Signal Process Control 2023;84:104775.
  • [55] Rautela K, Kumar D, Kumar V. Dual-modality synthetic mammogram construction for breast lesion detection using U-DARTS. Biocybern Biomed Eng 2022;42(3):1041-50.
  • [56] Ma Y, Peng Y. Simultaneous detection and diagnosis of mammogram mass using bilateral analysis and soft label based metric learning. Biocybern Biomed Eng 2022;42(1):215-32.
  • [57] Feng Y, et al. Multi-stage fully convolutional network for precise prostate segmentation in ultrasound images. Biocybern Biomed Eng 2023;43(3):586-602.
  • [58] Al-Jabbar M, Alshahrani M, Senan EM, Ahmed IA. Multi-method diagnosis of histopathological images for early detection of breast cancer based on hybrid and deep learning. Mathematics 2023;11(6):1429.
  • [59] Al-Jabbar M, Alshahrani M, Senan EM, Ahmed IA. Analyzing histological images using hybrid techniques for early detection of multi-class breast cancer based on fusion features of CNN and handcrafted. Diagnostics 2023;13(10):1753.
  • [60] Karthik R, Menaka R, Siddharth MV. Classification of breast cancer from histopathology images using an ensemble of deep multiscale networks. Biocybern Biomed Eng 2022;42(3):963-76.
  • [61] Huang X, Chen J, Chen M, Wan Y, Chen L. FRE-net: full-region enhanced network for nuclei segmentation in histopathology images. Biocybern Biomed Eng 2023; 43(1):386-401.
  • [62] Addo D, et al. A hybrid lightweight breast cancer classification framework using the histopathological images. Biocybern Biomed Eng 2024;44(1):31-54.
  • [63] Qian L, Bai J, Huang Y, Zeebaree DQ, Saffari A, Zebari DA. Breast cancer diagnosis using evolving deep convolutional neural network based on hybrid extreme learning machine technique and improved chimp optimization algorithm. Biomed Signal Process Control 2024;87:105492.
  • [64] Touil A, Kalti K, Conze P-H, Solaiman B, Mahjoub MA. Automatic detection of microcalcification based on morphological operations and structural similarity indices. Biocybern Biomed Eng 2020;40(3):1155-73.
  • [65] Ilesanmi AE, Chaumrattanakul U, Makhanov SS. A method for segmentation of tumors in breast ultrasound images using the variant enhanced deep learning. Biocybern Biomed Eng 2021;41(2):802-18.
  • [66] Loizidou K, Elia R, Pitris C. Computer-aided breast cancer detection and classification in mammography: a comprehensive review. Comput Biol Med 2023: 106554.
  • [67] Balaha HM, Saif M, Tamer A, Abdelhay EH. Hybrid deep learning and genetic algorithms approach (HMB-DLGAHA) for the early ultrasound diagnoses of breast cancer. Neural Comput Appl 2022;34(11):8671-95.
  • [68] Moon WK, Lee Y-W, Ke H-H, Lee SH, Huang C-S, Chang R-F. Computer-aided diagnosis of breast ultrasound images using ensemble learning from convolutional neural networks. Comput Methods Programs Biomed 2020;190: 105361.
  • [69] Sahu A, Das PK, Meher S. An efficient deep learning scheme to detect breast cancer using mammogram and ultrasound breast images. Biomed Signal Process Control 2024;87:105377.
  • [70] Jabeen K, et al. Breast cancer classification from ultrasound images using probability-based optimal deep learning feature fusion. Sensors 2022;22(3):807.
  • [71] Shen Y, et al. Artificial intelligence system reduces false-positive findings in the interpretation of breast ultrasound exams. Nat Commun 2021;12(1):5645.
  • [72] G. Chen, L. Li, Y. Dai, J. Zhang, and M. H. Yap, “AAU-net: an adaptive attention U-net for breast lesions segmentation in ultrasound images,” IEEE Trans Med Imaging, 2022.
  • [73] Taheri M, Omranpour H. Breast cancer prediction by ensemble meta-feature space generator based on deep neural network. Biomed Signal Process Control 2024;87:105382.
  • [74] Lanjewar MG, Panchbhai KG, Patle LB. Fusion of transfer learning models with LSTM for detection of breast cancer using ultrasound images. Comput Biol Med 2024:107914.
  • [75] Jarosik P, Klimonda Z, Lewandowski M, Byra M. Breast lesion classification based on ultrasonic radio-frequency signals using convolutional neural networks. Biocybern Biomed Eng 2020;40(3):977-86.
  • [76] R. R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, and D. Batra, “Gradcam: Visual explanations from deep networks via gradient-based localization,” in Proceedings of the IEEE international conference on computer vision, 2017, pp. 618-626.
  • [77] Afify HM, Mohammed KK, Hassanien AE. Novel prediction model on OSCC histopathological images via deep transfer learning combined with Grad-CAM interpretation. Biomed Signal Process Control 2023;83:104704.
  • [78] Clark K, et al. The Cancer Imaging Archive (TCIA): maintaining and operating a public information repository. J Digit Imaging 2013;26(6):1045-57.
  • [79] Alsolami AS, Shalash W, Alsaggaf W, Ashoor S, Refaat H, Elmogy M. King abdulaziz university breast cancer mammogram dataset (KAU-BCMD). Data 2021;6(11):111.
  • [80] D. L. Mason, “scaramallion, rhaxton, mrbean-bremen, Suever J, Vanessasaurus, et al. pydicom/pydicom: 1.3. 0. Zenodo; 2019.”.
  • [81] Ragab DA, Attallah O, Sharkas M, Ren J, Marshall S. A framework for breast cancer classification using multi-DCNNs. Comput Biol Med 2021;131:104245.
  • [82] Sajid U, Khan RA, Shah SM, Arif S. Breast cancer classification using deep learned features boosted with handcrafted features. Biomed Signal Process Control 2023; 86:105353.
  • [83] Inan MSK, Alam FI, Hasan R. Deep integrated pipeline of segmentation guided classification of breast cancer from ultrasound images. Biomed Signal Process Control 2022;75:103553.
  • [84] Eng ET, et al. Reducing cryoEM file storage using lossy image formats. J Struct Biol 2019;207(1):49-55.
  • [85] Rüfenacht E, et al. PyRaDiSe: A Python package for DICOM-RT-based autosegmentation pipeline construction and DICOM-RT data conversion. Comput Methods Programs Biomed 2023;231:107374.
  • [86] A. Mordvintsev and K. Abid, “Opencv-python tutorials documentation,” Obtenido https//media. readthedocs. org/pdf/opencv-python-tutroals/latest/opencv-pythontutroals.pdf, 2014.
  • [87] Khairnar S, Thepade SD, Gite S. Effect of image binarization thresholds on breast cancer identification in mammography images using OTSU, Niblack, Burnsen, Thepade’s SBTC. Intell Syst with Appl 2021;10:200046.
  • [88] T. L. Foundation, “masks_to_boxes — Torchvision main documentation.” https://pytorch.org/vision/main/generated/torchvision.ops.masks_to_boxes.html (accessed Jun. 03, 2023).
  • [89] Anaam A, Al-antari MA, Gofuku A. A deep learning self-attention cross residual network with Info-WGANGP for mitotic cell identification in HEp-2 medical microscopic images. Biomed Signal Process Control 2023;86:105191.
  • [90] A. Bochkovskiy, C.-Y. Wang, and H.-Y. M. Liao, “Yolov4: Optimal speed and accuracy of object detection,” arXiv Prepr. arXiv2004.10934, 2020.
  • [91] Han K, et al. A survey on vision transformer. IEEE Trans Pattern Anal Mach Intell 2022;45(1):87-110.
  • [92] A. Dosovitskiy et al., “An image is worth 16x16 words: Transformers for image recognition at scale,” arXiv Prepr. arXiv2010.11929, 2020.
  • [93] Ibrahem H, Salem A, Kang H-S. RT-ViT: real-time monocular depth estimation using lightweight vision transformers. Sensors 2022;22(10):3849.
  • [94] López-Cortés A, et al. Prediction of breast cancer proteins involved in immunotherapy, metastasis, and RNA-binding using molecular descriptors and artificial neural networks. Sci Rep 2020;10(1):8515.
  • [95] Baccouche A, Garcia-Zapirain B, Zheng Y, Elmaghraby AS. Early detection and classification of abnormality in prior mammograms using image-to-image translation and YOLO techniques. Comput Methods Programs Biomed 2022;221: 106884.
  • [96] Redmon J, Divvala S, Girshick R, Farhadi A. You only look once: Unified, real-time object detection. In: in Proceedings of the IEEE conference on computer vision and pattern recognition; 2016. p. 779-88.
  • [97] J. Terven and D. Cordova-Esparza, “A comprehensive review of YOLO: From YOLOv1 to YOLOv8 and beyond,” arXiv Prepr. arXiv2304.00501, 2023.
  • [98] Pedregosa F, et al. Scikit-learn: Machine learning in Python. J Mach Learn Res 2011;12:2825-30.
  • [99] Drioua WR, Benamrane N, Sais L. Breast Cancer Detection from Histopathology Images Based on YOLOv5. In: in 2022 7th International Conference on Frontiers of Signal Processing (ICFSP); 2022. p. 30-4.
  • [100] Rong R, et al. A deep learning approach for histology-based nucleus segmentation and tumor microenvironment characterization. Mod Pathol 2023;36(8):100196.
  • [101] Wang C-Y, Bochkovskiy A, Liao H-Y-M. YOLOv7: Trainable bag-of-freebies sets new state-of-the-art for real-time object detectors. In: in Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition; 2023. p. 7464-75.
  • [102] Inui A, et al. Detection of elbow OCD in the ultrasound image by artificial intelligence using YOLOv8. Appl Sci 2023;13(13):7623.
  • [103] Ukwuoma CC, et al. Deep learning framework for rapid and accurate respiratory COVID-19 prediction using chest X-ray images. J King Saud Univ Inf Sci 2023;35(7):101596.
  • [104] Razali NF, Isa IS, Sulaiman SN, Abdul Karim NK, Osman MK, Che Soh ZH. Enhancement technique based on the breast density level for mammogram for computer-aided diagnosis. Bioengineering 2023;10(2):153.
  • [105] Huang R, et al. Boundary-rendering network for breast lesion segmentation in ultrasound images. Med Image Anal 2022;80:102478.
  • [106] Lv T, et al. A hybrid hemodynamic knowledge-powered and feature reconstruction-guided scheme for breast cancer segmentation based on DCE-MRI. Med Image Anal 2022;82:102572.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0da88c2-767e-4859-841d-8f81325191ef
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.