PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparative analysis of bias correction techniques for future climate assessment using CMIP6 hydrological variables for the Indian subcontinent

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The study focuses on the bias correction of Coupled Model Intercomparison Project Phase 6 (CMIP6) hydrologic variables for the Indian region. The performance of two widely accepted bias correction methodologies, namely Quantile Mapping (QM) and Bias Correction Spatial Disaggregation (BCSD), is compared. The study undertakes to evaluate the application of these popular bias correction methodologies on four important hydrologic variables viz. precipitation, temperature, and surface wind. The QM methodology is employed and compared with BCSD based bias corrected variables obtained from NEX-GDDP-CMIP6 dataset. The selected GCM historical bias corrected climate variables using QM are compared with the NCEP reanalysis variables. The objective is to improve the reliability and accuracy of climate projections by minimizing biases present in the GCM outputs. Through a comprehensive comparative analysis, it is determined that QM exhibits superior performance in reducing biases when compared to BCSD. Thus, use of QM demonstrates higher efficacy by effectively capturing the statistical distribution characteristics of observed data and transferring them to the GCM outputs. The future climate change over the Indian region is observed for both QM and BCSD algorithms for SSP5-8.5, SSP2-4.5, and SSP1-2.6. The result emphasizes the importance of selecting an appropriate bias correction methodology to enhance the reliability of climate projections in the Indian region. Ultimately, the findings of this study contribute to the broader field of climate modeling and impact assessment, providing valuable insights into the selection and application of bias correction techniques for CMIP6 datasets in the Indian subcontinent region.
Słowa kluczowe
Czasopismo
Rocznik
Strony
813--829
Opis fizyczny
Bibliogr. 77 poz.
Twórcy
autor
  • Department of Computer Science and Engineering, Charotar University of Science and Technology, Anand, Gujarat, India
autor
  • Department of Computer Science and Engineering, Charotar University of Science and Technology, Anand, Gujarat, India
  • Data Analytics and AI Team, TIX Ecosystems Pvt. Ltd, Vadodara, Gujarat, India
Bibliografia
  • 1. Abatzoglou JT, Brown TJ (2012) A comparison of statistical down- scaling methods suited for wildfire applications. Int J Climatol 32:772-780. https://doi.org/10.1002/joc.2312
  • 2. Abramopoulos F, Rosenzweig C, Choudhury B (1988) Improved ground hydrology calculations for global climate models (GCMs): soil water movement and evapotranspiration. J Climate 1:921-941. https://doi.org/10.1175/1520-0442(1988)001% 3c0921:IGHCFG%3e2.0.CO;2
  • 3. Ahmed KF, Wang G, Silander J, Wilson AM, Allen JM, Horton R, Anyah R (2013) Statistical downscaling and bias correction of climate model outputs for climate change impact assessment in the US northeast. Glob Planet Change 100:320-32. https://doi.org/10.1016/j.gloplacha.2012.11.003
  • 4. Alexander LV, Tapper N, Zhang X, Fowler HJ, Tebaldi C, Lynch A (2009) Climate extremes: progress and future directions. Int J Climatol 29(3):317-319. https://doi.org/10.1002/joc.1861
  • 5. Bao Y, Wen X (2017) Projection of China’s near -and long-term climate in a new high-resolution daily downscaled dataset NEX- GDDP. J Meteorol Res 31:236-249. https://doi.org/10.1007/s13351-017-6106-6
  • 6. Barnett T et al (2005) Detecting and attributing external influences on the climate system: a review of recent advances. J Clim 18:1291-1314
  • 7. Barsugli JJ, Guentchev G, Horton RM, Wood A, Mearns LO, Liang XZ, Winkler JA, Dixon K, Hayhoe K, Rood RB, Goddard L (2013) The practitioner’s dilemma: how to assess the credibility of downscaled climate projections. Eos Trans Am Geophys Union 94(46):424-425
  • 8. Basu S, Sauchyn DJ (2022) Future Changes in the surface water balance over western Canada using the CanESM5 (CMIP6) ensemble for the shared socioeconomic pathways 5 scenario. Water 14(5):691
  • 9. Bhatti HA, Rientjes T, Haile AT, Habib E, Verhoef W (2016) Evaluation of bias correction method for satellite-based rainfall data. Sensors 16:884. https://doi.org/10.3390/s16060884
  • 10. Briley LJ, Ashley WS, Rood RB, Krmenec A (2017) The role of meteorological processes in the description of uncertainty for climate change decision-making. Theor Appl Climatol 127:643-654. https://doi.org/10.1007/s00704-015-1652-2
  • 11. Cannon A, Sobie S, Murdock T (2015) Bias correction of GCM precipitation by quantile mapping: how well do methods preserve changes in quantiles and extremes? J Clim 28(17):6938-6959
  • 12. Chai T, Draxler RR (2014) Root mean square error (RMSE) or mean absolute error (MAE)?—arguments against avoiding RMSE in the literature. Geosci Model Dev 7:1247-1250
  • 13. Christensen JH, Hewitson B, Busuioc A, Chen A, Gao X, Held I, Jones R, Kolli RK, Kwon WT, Laprise R, Magana Rueda V, Mearns L, Menendez CG, Raisanen J, Rinke A, Sarr A, Whetton P (2007) Regional Climate Projections. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate change 2007: the physical science basis contribution of working group i to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
  • 14. Christensen JH, Boberg F, Christensen OB, Lucas-Picher P (2008) On the need for bias correction of regional climate change projections of temperature and precipitation. Geophys Res Lett 35:L20709. https://doi.org/10.1029/2008GL035694
  • 15. Crochemore L, Ramos M-H, Pappenberger F (2016) Bias correcting precipitation forecasts to improve the skill of seasonal streamflow forecasts. Hydrol Earth Syst Sci 20:3601-3618
  • 16. Ehret U, Zehe E, Wulfmeyer V, Warrach-Sagi K, Liebert J (2012) HESS Opinions “Should we apply bias correction to global and regional climate model data?” Hydrol Earth Syst Sci 16(9):3391-404
  • 17. Enayati M, Bozorg-Haddad O, Bazrafshan J, Hejabi S, Chu X (2021) Bias correction capabilities of quantile mapping methods for rainfall and temperature variables. J Water Climate Change 12(2):401-19. https://doi.org/10.2166/wcc.2020.261
  • 18. Fowler HJ, Blenkinsop S, Tebaldi C (2007) Linking climate change modelling to impacts studies: recent advances in downscaling techniques for hydrological modelling. Int J Climatol 27(12):1547-1578
  • 19. Halder S, Parekh A, Chowdary JS, Gnanaseelan C, Kulkarni A (2021) Assessment of CMIP6 models’ skill for tropical Indian Ocean sea surface temperature variability. Int J Climatol 41(4):2568-2588
  • 20. Hewitson B, Daron J, Crane R, Zermoglio M, Jack C (2014) Clim Change 122:539
  • 21. Hossain MM, Garg N, Faisal Anwar AHM, Prakash M (2021) Comparing spatial interpolation methods for cmip5 monthly precipitation at catchment scale. J Indian Water Resour Soc 65:4
  • 22. IPCC. Climate Change 2007: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press: Cambridge, New York, 2007.
  • 23. Jose DM, Dwarakish GS (2022) Bias correction and trend analysis of temperature data by a high-resolution CMIP6 model over a Tropical River Basin. Asia-Pacific J Atmos Sci 58:97-115. https://doi.org/10.1007/s13143-021-00240-7
  • 24. Kalnay et al (1996) The NCEP/NCAR 40-year reanalysis project. Bull Amer Meteor Soc 77:437-470
  • 25. Kunkel KE, Pielke RA, Changnon SA (1999) Temporal fluctuations in weather and climate extremes that cause economic and human health impacts: a review. Bull Amer Meteor Soc 80:1077-1098.
  • 26. https://doi.org/10.1175/1520-0477(1999)080%3c1077:TFIWAC% 3e2.0.CO;2
  • 27. Laux P, Rotter RP, Webber H, Dieng D, Rahimi J, Wei J, Kunstmann H (2021) To bias correct or not to bias correct? An agricultural impact modelers’ perspective on regional climate model data. Agric For Meteorol 304:108406
  • 28. Lenderink G, Buishand A, Deursen WV (2007) Estimates of future discharges of the river rhine using two scenario methodologies: direct versus delta approach. Hydrol Earth Syst Sci 11:1145-1159
  • 29. Li H, Sheffield J, Wood EF (2010) Bias correction of monthly precipitation and temperature fields from Intergovernmental panel on climate change AR4 models using equidistant quantile matching. J Geophys Res 115:D10101. https://doi.org/10.1029/2009JD012882
  • 30. Li C, Sinha E, Horton DE, Diffenbaugh NS, Michalak AM (2014) Joint bias correction of temperature and precipitation in climate model simulations. J Geophys Res Atmos 119(23):13-53
  • 31. Luo M, Liu T, Meng F, Duan Y, Frankl A, Bao A, De Maeyer P (2018) Comparing bias correction methods used in downscaling precipitation and temperature from regional climate models: a case study from the Kaidu river basin in Western China. Water 10:1046
  • 32. Maraun D (2013) Bias correction, quantile mapping, and downscaling: revisiting the inflation issue. J Climate 26:2137-2143. https://doi.org/10.1175/JCLI-D-12-00821.1
  • 33. Maraun D (2016) Bias correcting climate change simulations—a critical review. Curr Clim Change Rep 2:211-220. https://doi.org/10.1007/s40641-016-0050-x
  • 34. Martins J, Fraga H, Fonseca A, Santos JA (2021) Climate projections for precipitation and temperature indicators in the Douro wine region: the importance of bias correction. Agronomy 11:990. https://doi.org/10.3390/agronomy11050990
  • 35. Maurer E, Hidalgo H (2008) Utility of daily vs. monthly large-scale climate data: an intercomparison of two statistical downscaling methods. Hydrol Earth Syst Sci Discuss 4:3413-3440
  • 36. McGuffie K, Henderson-Sellers A, Holbrook N, Kothavala Z, Balachova O, Hoekstra J (1999) Assessing simulations of daily temperature and precipitation variability with global climate models for present and enhanced greenhouse climates. Int J Climatol 19:1-26. https://doi.org/10.1002/(SICI)1097-0088(199901)19:1% 3c1::AID-JOC348%3e3.0.CO;2-T
  • 37. Mendez M, Maathuis B, Hein-Griggs D, Alvarado-Gamboa L-F (2020) Performance evaluation of bias correction methods for climate change monthly precipitation projections over costa Rica. Water 12:482. https://doi.org/10.3390/w12020482
  • 38. Moberg A, Jones PD (2005) Trends in indices for extremes in daily temperature and precipitation in central and western Europe, 1901-99. Int J Climatol 25:1149-1171. https://doi.org/10.1002/joc.1163
  • 39. Ngai ST, Tangang F, Juneng L (2017) Bias correction of global and regional simulated daily precipitation and surface mean temperature over Southeast Asia using quantile mapping method. Glob Planet Chang 149:79-90
  • 40. Ning L, Riddle EE, Bradley RS (2015) Projected changes in climate extremes over the Northeastern United States. J Climate 28:3289- 3310. https://doi.org/10.1175/JCLI-D-14-00150.1
  • 41. Nyaupane N, Thakur B, Kalra A, Ahmad S (2018) Evaluating future flood scenarios using CMIP5 climate projections. Water 10:1866. https://doi.org/10.3390/w10121866
  • 42. Olsson J, Berggren K, Olofsson M, Viklander M (2009) Applying climate model precipitation scenarios for urban hydrological assessment: a case study in Kalmar City. Sweden Atmos Res 92:364- 375. https://doi.org/10.1016/j.atmosres.2009.01.015
  • 43. Parthasarathy B, Rupakumar K, Munot AA (1996), Homogeneous regional summer monsoon rainfall over India: interannual variability and teleconnections, Research report no. RR-070.
  • 44. Piani C, Weedon GP, Best M, Gomes SM, Viterbo P, Hagemann S, Haerter JO (2010a) Statistical bias correction of global simulated
  • 45. daily precipitation and temperature for the application of hydrological models. J Hydrol 395(3-4):199-215
  • 46. Piani C, Haerter JO, Coppola E (2010b) Statistical bias correction for daily precipitation in regional climate models over Europe. Theor Appl Climatol 99:187-192
  • 47. Pielke RA Sr, Wilby RL (2012) Regional climate downscaling: what’s the point? EOS Trans Am Geophys Union 93(5):52-53
  • 48. Plummer DA, Caya D, Frigon A, Cote H, Giguere M, Paquin D, Biner S, Harvey R, De Elia R (2006) Climate and climate change over North America as simulated by the Canadian RCM. J Clim 19(13):3112-3132
  • 49. Qian W, Chang HH (1992) Projecting health impacts of future temperature: a comparison of quantile-mapping bias-correction methods. Int J Environ Res Public Health 2021:18. https://doi.org/10.3390/ ijerph18041992
  • 50. Raghavan SV, Hur J, Liong SY (2018) Evaluations of NASA NEX- GDDP data over Southeast Asia: present and future climates. Clim Change 148:503-18
  • 51. Randall DA, Wood RA, Bony S, Colman R, Fichefet T, Fyfe J, Kattsov V, Pitman A, Shukla J, Srinivasan J, Stouffer RJ, Sumi A, Taylor KE (2007) Climate models and their evaluation. In: Solomon S, Qin D, Manning M, Chen Z, Marquis M, Averyt KB, Tignor M, Miller HL (eds) Climate Change 2007: the physical science basis. Contribution of working group I to the fourth assessment report of the intergovernmental panel on climate change. Cambridge University Press, Cambridge
  • 52. Reichler T, Kim J (2008) How well do coupled models simulate today’s climate? Bull Amer Meteor Soc 89:303-312. https://doi.org/10.1175/BAMS-89-3-303
  • 53. Ringard J, Seyler F, Linguet L (2017) A quantile mapping bias correction method based on hydroclimatic classification of the Guiana Shield. Sensors 17(6):1413
  • 54. Romera R, Gaertner MA, Sanchez E, Dommguez M, Gonzalez-Aleman JJ, Miglietta MM (2017) Climate change projections of medicanes with a large multi-model ensemble of regional climate models. Glob Planet Change 151:134-43
  • 55. Salvi K, Kannan S, Ghosh S (2013) High-resolution multisite daily rainfall projections in India with statistical downscaling for climate change impacts assessment. J Geophys Res Atmos 118:3557-3578. https://doi.org/10.1002/jgrd.50280
  • 56. Santidrian Tomillo P, Saba V, Lombard C et al (2015) Global analysis of the effect of local climate on the hatchling output of leatherback turtles. Sci Rep 5:16789. https://doi.org/10.1038/srep16789
  • 57. Shah M, Thakkar A, Shastri H (2023) A Comparative Study of Spatial Interpolation Methods for CMIP6 Monthly Historical and Future Hydro-climatic Datasets for Indian Region. 2023 International Conference on Machine Intelligence for GeoAnalytics and Remote Sensing (MIGARS), Hyderabad, India, 2023, pp. 1-4, https://doi.org/10.1109/MIGARS57353.2023.10064528.
  • 58. Shrestha M, Acharya SC, Shrestha PK (2017) Bias correction of climate models for hydrological modelling—are simple methods still useful? Met Apps 24:531-539. https://doi.org/10.1002/met.1655
  • 59. Smitha PS, Narasimhan B, Sudheer KP, Annamalai H (2018) An improved bias correction method of daily rainfall data using a sliding window technique for climate change impact assessment. J Hydrol 556:100-118. https://doi.org/10.1016/j.jhydrol.2017.11. 010
  • 60. Solaiman T, Simonovic S (2010) National centers for environmental prediction-national center for atmospheric research (NCEP- NCAR) reanalysis data for hydrologic modelling on a basin scale. Can J Civil Eng. https://doi.org/10.1139/L10-005
  • 61. Song YH, Chung ES, Shiru MS (2020) Uncertainty analysis of monthly precipitation in GCMs using multiple bias correction methods under different RCPs. Sustainability 12(18):7508
  • 62. Sorland SL, Schar C, Luthi D, Kjellstrom E (2018) Bias patterns and climate change signals in GCM-RCM model chains. Environ Res Lett 13(7):074017
  • 63. Sun Q, Miao C, Duan Q (2016) Extreme climate events and agricultural climate indices in China: CMIP5 model evaluation and projections. Int J Climatol 36:43-61. https://doi.org/10.1002/joc.4328
  • 64. Sunyer MA, Coauthors (2014) Inter-comparison of statistical downscaling methods for projection of extreme precipitation in Europe. Hydrol Earth Syst Sci Discuss 11:6167-6214. https://doi.org/10.5194/hessd-11-6167-2014
  • 65. Swart NC (2019) The Canadian earth system model version 5 (CanESM5.0.3). Geosci Model Dev 12(11):4823-4873. https://doi.org/10.5194/gmd-12-4823-2019
  • 66. Tan Y, Guzman SM, Dong Z, Tan L (2020) Selection of effective GCM bias correction methods and evaluation of hydrological response under future climate scenarios. Climate 8(10):108
  • 67. Teutschbein C, Seibert J (2012) Bias correction of regional climate model simulations for hydrological climate-change impact studies: review and evaluation of different methods. J Hydrol 456:12-29
  • 68. Thrasher B, Maurer EP, McKellar C, Duffy PB (2012) Technical note: bias correcting climate model simulated daily temperature extremes with quantile mapping. Hydrol Earth Syst Sci 16(9):3309-3314
  • 69. Thrasher B, Xiong J, Wang W, Melton F, Michaelis A, Nemani R (2013) Downscaled climate projections suitable for resource management. EOS Trans Am Geophys Union 94:321-323. https://doi.org/10.1002/2013EO370002
  • 70. Vannitsem S (2011) Bias correction and post-processing under climate change. Nonlinear Process Geophys 18(6):911-924
  • 71. Vrac M, Friederichs P (2015) Multivariate—intervariable, spatial, and temporal—bias correction. J Climate 28:218-237. https://doi.org/10.1175/JCLI-D-14-00059.1
  • 72. Willems P, Vrac M (2011) Statistical precipitation downscaling for small-scale hydrological impact investigations of climate change. J Hydrol 402:193-205. https://doi.org/10.1016/j.jhydrol.2011.02. 030
  • 73. Willmott C, Matsuura K (2005) Advantages of the mean absolute error (MAE) over the root mean square error (RMSE) in assessing average model performance. Clim Res 30:79-82
  • 74. Wood AW, Maurer EP, Kumar A, Lettenmaier D (2002) Long-range experimental hydrologic forecasting for the eastern United States. J Geophys Res 107(D20):4429. https://doi.org/10.1029/2001JD000659
  • 75. World Modelling Summit for Climate Prediction, jointly organized by the World Climate Research Programme, World Weather Research Programme, and the International Geosphere-Biosphere Programme. http://wcrp.ipsl.j ussieu.fr/Workshops/ModellingSummit/Documents/FinalSummitStat_6_6.pdf (May 2008).
  • 76. Xu L, Wang A (2019) Application of the bias correction and spatial downscaling algorithm on the temperature extremes from CMIP5 multimodel ensembles in China. Earth and Space Science 6:2508- 2524. https://doi.org/10.1029/2019EA000995
  • 77. Yang X, Wood EF, Sheffield J, Ren L, Zhang M, Wang Y (2018) Bias correction of historical and future simulations of precipitation and temperature for China from CMIP5 models. J Hydrometeorol 19:609-623
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0da0854-c02a-4d1b-a77e-602c20309153
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.