Powiadomienia systemowe
- Sesja wygasła!
Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
The study demonstrates the possibilities of using, as well as the features associated with the use of, unmanned aerial vehicles (UAVs) for military and peaceful purposes. Information is provided on the need to use components that would contribute towards ensuring thermal protection against modern laser weapons. The requirements for such materials are given, according to the field of application of the UAV. An analysis of the available materials that can be used to create thermal protection of UAVs against laser weapons is provided. The thermophysical characteristics of various materials are presented. The work presents technological features of production and properties of low-density carbon-carbon composite materials (CCCM). It is proposed to consider the prospects of using CCCM materials for not only the UAV structural components but also other purposes.
Słowa kluczowe
Czasopismo
Rocznik
Tom
Strony
45--57
Opis fizyczny
Bibliogr. 30 poz., rys., tab., wzory
Twórcy
autor
- SIA UNDERESLAB, Brīvības str. 72 k-2, Centra rajons, Riga, LV-1011, Latvia
autor
- SIA UNDERESLAB, Brīvības str. 72 k-2, Centra rajons, Riga, LV-1011, Latvia
autor
- Zaporizhzhia National University, Zhukovs'koho str. 66, Zaporizhzhia, Zaporizhia Oblast, Ukraina, 69600
Bibliografia
- [1] Mohsan, S.A.H., Khan, M.A., Noor, F., Ullah, I. and Alsharif, M.H. “Towards the Unmanned Aerial Vehicles (UAVs): A Comprehensive Review.” Drones Vol. 6 (2022): p. 147. DOI 10.3390/drones6060147.
- [2] Nex, F., Armenakis, C., Cramer, M., Cucci, D.A., Gerke, M., Honkavaara, E., Kukko, A., Persello, C. and Skaloud, J. “UAV in the Advent of the Twenties: Where We Stand and What is Next.” ISPRS Journal of Photogrammetry and Remote Sensing Vol. 184 (2022): pp. 215-242. DOI 10.1016/j.isprsjprs.2021.12.006.
- [3] Di, L. “Tian Loong I Fire Fight UAV.” 2019. Available at: https://k.sina.com.cn/article_1726918143_66eeadff02000tkw2.html (accessed on 6 September 2021).
- [4] Alappatt, T.B., Ajith, S.S., Jose, J., Augustine, J., Sankar, V. and George, J.M. “Design and Analysis of Fire Fighting Drone.” In: Sengodan, T., Murugappan, M. and Misra, S. (eds). Advances in Electrical and Computer Technologies. ICAECT 2020. Lecture Notes in Electrical Engineering, Vol. 711. Springer, Singapore (2021). DOI 10.1007/978-981-15-9019-1_85.
- [5] Alghamdi, Yousef, Munir, Arslan and La, Hung Manh. “Architecture, Classification, and Applications of Contemporary Unmanned Aerial Vehicles.” IEEE Consumer Electronics Magazine Vol. 10 No. 6 (2021): pp. 9-20. DOI 10.1109/MCE.2021.3063945.
- [6] Chiang, W.C., Li, Y., Shang, J. and Urban, T.L. “Impact of Drone Delivery on Sustainability and Cost: Realizing the UAV Potential Through Vehicle Routing Optimization.” Applied Energy Vol. 242 (2019): pp. 1164-1175.
- [7] Cevik, P., Kocaman, I., Akgul, A.S. and Akca, B. “The Small and Silent Force Multiplier: A Swarm UAV - Electronic Attack.” Journal of Intelligent and Robotic Systems Vol. 70 (2013): pp. 595-608.
- [8] Martins, Bruno, Oliveira, Arthur, Holland Michel, and Andrea, Silkoset. “Countering the Drone Threat: Implications of C-Uas Technology for Norway in an EU and NATO Context.” PRIO Paper. PRIO, Oslo. 2020.
- [9] Antonio, Calcara, Andrea, Gilli, Mauro, Gilli, Raffaele, Marchetti, R. and Ivan Zaccagnini. “Why Drones have not Revolutionized War: the Enduring Hider-Finder Competition in Air Warfare.” International Security Vol. 46 No. 4 (2022): pp. 130-171. DOI 10.1162/isec_a_00431.
- [10] Park, S., Kim, H.T., Lee, S., Joo, H. and Kim, H. “Survey on Anti-Drone Systems: Components, Designs, and Challenges.” IEEE Access Vol. 9 (2021): pp. 42635-42659. DOI 10.1109/ACCESS.2021.3065926.
- [11] Yaacoub, J.-P., Noura, H., Salman, O. and Chehab, A. “Security Analysis of Drones Systems: Attacks, Limitations, and Recommendations.” Internet of Things Vol. 11 (2020): p. 100218. DOI 10.1016/j.iot.2020.100218.
- [12] Palomba, G., Crupi, V. and Epasto, G. “Additively Manufactured Lightweight Monitoring Drones: Design and Experimental Investigation.” Polymer Vol. 241 (2022): p. 124557. DOI 10.1016/j.polymer.2022.124557.
- [13] Sally Cole Johnson. “High-Energy Laser Weaponry Delivers Speed-of-Light ‘Hard Kills’ to Drones.” 2022. Available at: https://www.laserfocusworld.com/lasers-sources/article/14277939/highenergy-laser-weaponry-delivers-speedoflight-hard-kills-to-drones, access date 04.04.2023
- [14] Lionis, A., Tsigopoulos, A. and Cohn, K. “An Application of Artificial Neural Networks to Estimate the Performance of High-Energy Laser Weapons in Maritime Environments.” Technologies Vol. 10 (2022): p. 71. DOI 10.3390/technologies10030071.
- [15] Bernatskyi, A. and Sokolovskyi, M. “History of Military Laser Technology Development in Military Applications.” History of Science and Technology Vol. 12 No. 1 (2022): pp. 88-113. DOI 10.32703/2415-7422-2022-12-1-88-113.
- [16] Haim, Abitan, Henrik, Bohr, and Preben, Buchhave, “Correction to the Beer-Lambert-Bouguer Law for Optical Absorption.” Applied Optics Vol. 47 (2008): pp. 5354-5357. DOI 10.1364/AO.47.005354.
- [17] Thangavel, Prabhu, and Ajay, Sekar. “Investigations on Heat Transfer Characteristics of Porous type Copper Heat Sink with Bifurcations.” Journal of Thermal Engineering Vol. 7 No. 3 (2021): pp. 584-594.
- [18] Pavlenko, D., Dvirnyk, Y. and Przysowa, R. “Advanced Materials and Technologies for Compressor Blades of Small Turbofan Engines.” Aerospace Vol. 8 (2021): p. 1. DOI 10.3390/aerospace8010001.
- [19] Williams, J.C. and Boyer, R.R. “Opportunities and Issues in the Application of Titanium Alloys for Aerospace Components.” Metals Vol. 10 (2020): p. 705. DOI 10.3390/met10060705.
- [20] Bytkin, S.V. “Thermal and Radiation Resistant Materials for Space Electronics.” In: Bytkin, S.V., Kritskaya, T.V., Karpenko, H.V. and Yanko, T.B. (eds). Space Technologists: Present and Future: Abstract. Report of the 4th International Conference: p. 94. Dnepropetrovsk, April 17-19, 2013.
- [21] Park, S.J. (2018). “Carbon Carbon Composites.” In: Carbon Fibers. Springer Series in Materials Science, Vol. 210. Springer, Singapore, pp. 279-294. DOI 10.1007/978-981-13-0538-2_8.
- [22] Zelin, Wang, Bingzhu, Lai, Hui, Wang, Heye, Xiao, and Pingwen, Ming, Effects of Micropore Characteristics in the Metal Skeleton on Heat and Mass Transfer in an Open Foam Structure for Thermal Management in the Hydrogen UAV.” International Journal of Thermal Sciences Vol. 179 (2022): p. 107628. DOI 10.1016/j.ijthermalsci.2022.107628.
- [23] AL-Saleem, Nouf K., Ghrib, Taher, AL-Naghmaish, Aishah, Elshekhipy, Abdelhafeez A., Almalki, Nawal, Gmati, Nabil, and Kamoun Turki, Najoua. Effect of Porosity on Structural, Optical, Thermal, and Electrical Properties of Nickel-Foam Coated Graphene Sheets.” Journal of Materials Research and Technology Vol. 19 (2022): pp. 300-313. DOI 10.1016/j.jmrt.2022.05.049.
- [24] Dyga, R. and Witczak, S. “Investigation of Effective Thermal Conductivity Aluminum Foams.” Procedia Engineering Vol. 42 (2012): pp. 1088-1099. DOI 10.1016/j.proeng.2012.07.500.
- [25] Lu, Pengbo, Cheng, Fan, Ou, Yanghao, Lin, Meiyan, Su, Lingfeng, Chen, Size, Yao, Xilang, and Liu, Detao. “A Flexible and Transparent thin Film Heater Based on a Carbon Fiber/Heat-Resistant Cellulose Composite.” Composites Science and Technology Vol. 153 (2017): pp. 1-6. DOI 10.1016/j.compscitech.2017.09.033.
- [26] Lee, Sora, Jang, Dawon, Chung, Yong Sik, and Lee, Sungho “Cost-Effective and Highly Efficient Surface Heating Elements Using High Thermal Conductive Carbon Fibers.” Composites Part A: Applied Science and Manufacturing Vol. 137 (2020): p. 105992.
- [27] Hu, J.; Jahid, M.A.; Harish Kumar, N.; Harun, V. Fundamentals of the Fibrous Materials. In Handbook of Fibrous Materials; Wiley Online Library: Hoboken, NJ, USA, 2020; pp. 1-36. DOI 10.1002/9783527342587.ch1.
- [28] Shcherbakova, E.P., Prokhorova, A.D., Karpenko, A.V. and Yanko, T.B. “Current State of Methods for Low-Dense Constructional Composite Materials Producing (Overview).” Problems of Atomic Science and Technology (Past) Vol. 125 No. 1 (2020): pp. 114-120.
- [29] Sharma, R., Ravikumar, N.L., Dasgupta, K., Chakravartty, J.K. and Kar, K.K. “Advanced Carbon-Carbon Composites: Processing Properties and Applications.” In: Kar, K. (ed). Composite Materials. Springer, Berlin, Heidelberg (2017), pp. 315-367. DOI 10.1007/978-3-662-49514-8_10.
- [30] Skachkov, V. A. “Obtaining Low-Density Carbon Carbonized Materials.” In: Skachkov, V.A., Chervonny, I.F. and Karpenko, A.V. (eds). Eastern European Journal of Advanced Technologies, Kharkiv (2013): pp. 48-51.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0d2d98a-93cd-40a1-8405-63e315b036ab