Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Cork composites have shown excellent potential in impact mitigating systems. Their sustainability greatly surpasses the currently used solutions. In addition, recent advances in developing cork composites with shear thickening fluids (STFs) have demonstrated exciting results for impact mitigation. This study explores different STF formulations based on polyethylene glycol (PEG), with a molecular weight of 400 g/mol, and SiO2 particles, investigating their application in layered cork composites for impact mitigation. Different STF formulations are investigated by processing suspensions with different fumed silica concentrations ranging from 10 to 60 wt.%. Using a cone-plate configuration, rheological measurements were conducted on these suspensions, which were then employed as an interfacial layer in agglomerated cork composite layered structures. These hybrid composites were then subjected to 20 J impact tests. PEG 400 exhibited fluid final states for silica concentrations up to 30 wt.% and crystallised at higher concentrations. Based on the results, STF within cork layers was positive regarding impact force reduction, drawing insights for future application of STF suspensions in cork composites for impact mitigation.
Czasopismo
Rocznik
Tom
Strony
art. no. e92, 2024
Opis fizyczny
Bibliogr. 34 poz., rys., tab., wykr.
Twórcy
autor
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Campus Universitario de Santiago, 3810‑193 Aveiro, Portugal
autor
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Campus Universitario de Santiago, 3810‑193 Aveiro, Portugal
- LASI-Intelligent Systems Associate Laboratory, Guimaraes, Portugal
autor
- Department of Aeronautical Engineering, Eskişehir Osmangazi University, Eskişehir, Turkey
autor
- Department of Materials and Ceramic Engineering, CICECO-Aveiro Institute of Materials, University of Aveiro, Campus Universitario de Santiago, 3810‑193 Aveiro, Portugal
autor
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Campus Universitario de Santiago, 3810‑193 Aveiro, Portugal
- LASI-Intelligent Systems Associate Laboratory, Guimaraes, Portugal
autor
- Centre for Mechanical Technology and Automation (TEMA), Department of Mechanical Engineering, University of Aveiro, Campus Universitario de Santiago, 3810‑193 Aveiro, Portugal
- LASI-Intelligent Systems Associate Laboratory, Guimaraes, Portugal
Bibliografia
- 1. K. Van Canneyt, P. Verdonck, 10.02 - Mechanics of Biofluids in Living Body, in: A. Brahme (Ed.), Comprehensive Biomedical Physics, Elsevier, Oxford, 2014. 39-53. https://doi.org/10.1016/B978-0-444-53632-7.01003-0.
- 2. Kang TJ, Kim CY, Hong KH. Rheological behavior of concentrated silica suspension and its application to soft armor. J Appl Polym Sci. 2012;124:1534-41. https://doi.org/10.1002/app.34843.
- 3. Barnes - 2000 - A handbook of elementary rheology.pdf, (n.d.). https://ia601206.us.archive.org/4/items/HandbookOfRheol ogy/Handbook_of_Rheology.pdf (accessed January 5, 2024).
- 4. Ozel BG, Orum A, Yildiz M, Menceloglu YZ. Experimental study on the rheology of anisotropic, flocculated and low volume fraction colloids. Korea-Aust Rheol J. 2014;26:105-16. https://doi.org/10.1007/s13367-014-0011-7.
- 5. Pan X, Tasdelen MA, Laun J, Junkers T, Yagci Y, Matyjaszewski K. Photomediated controlled radical polymerization. Prog Polym Sci. 2016;62:73-125. https://doi.org/10.1016/j.progpolymsci.2016.06.005.
- 6. Baharvandi HR, Alebooyeh M, Alizadeh M, Heydari MS, Kordani N, Khaksari P. The influences of particle-particle interaction and viscosity of carrier fluid on characteristics of silica and calcium carbonate suspensions-coated Twaron® composite. J Exp Nanosci. 2016;11:550-63. https://doi.org/10.1080/17458080.2015.1094190.
- 7. Baharvandi HR, Alebooyeh M, Alizadeh M, Khaksari P, Kordani N. Effect of silica weight fraction on rheological and quasi-static puncture characteristics of shear thickening fluid-treated Twaron® composite. J Ind Text. 2016;46(2):473-94. https://doi.org/10.1177/1528083715589750.
- 8. Lu Z, Jing X, Sun B, Gu B. Compressive behaviors of warp-knitted spacer fabrics impregnated with shear thickening fluid. Compos Sci Technol. 2013;88:184-9. https://doi.org/10.1016/j.compscitech.2013.09.004.
- 9. Gurgen S, Kuşhan MC. The stab resistance of fabrics impregnated with shear thickening fluids including various particle size of additives. Compos A Appl Sci Manuf. 2017;94:50-60. https://doi.org/10.1016/j.compositesa.2016.12.019.
- 10. Tan ZH, Zuo L, Li WH, Liu LS, Zhai PC. Dynamic response of symmetrical and asymmetrical sandwich plates with shear thickening fluid core subjected to penetration loading. Mater Des 2016;94:105-10. https://doi.org/10.1016/j.matdes.2016.01.036.
- 11. Hasan-nezhad H, Yazdani M, Jeddi M. High- and low-velocity impact experiments on treated STF/3D glass fabrics. Thin-Walled Struct. 2022;171:108720. https://doi.org/10.1016/j.tws.2021.108720.
- 12. Selver E. Tensile and flexural properties of glass and carbon fibre composites reinforced with silica nanoparticles and polyethylene glycol. J Ind Text. 2020;49:809-32. https://doi.org/10.1177/1528083719827368.
- 13. Pinto F, Meo M. Design and manufacturing of a novel shear thickening fluid composite (STFC) with enhanced out-of-plane properties and damage suppression. Appl Compos Mater. 2017;24:643-60. https://doi.org/10.1007/S10443-016-9532-1/FIGURES/15.
- 14. Silva SP, Sabino MA, Fernandes EM, Correlo VM, Boesel LF, Reis RL. Cork: properties, capabilities and applications. Int Mater Rev. 2005;50:345-65. https://doi.org/10.1179/174328005X41168.
- 15. Sergi C, Tirillo J, Sarasini F, Pozuelo EB, Saez SS, Burgstaller C. The potential of agglomerated cork for sandwich structures: a systematic investigation of physical, thermal, and mechanical properties. Polymers. 2019. https://doi.org/10.3390/polym11122118.
- 16. Varela MM, Fernandes FAO, Alves de Sousa RJ. Development of an eco-friendly head impact protection device. Appl Sci. 2020;10:2492. https://doi.org/10.3390/app10072492.
- 17. Gurgen S, de Sousa RJA. Rheological and deformation behavior of natural smart suspensions exhibiting shear thickening properties. Archiv Civ Mech Eng. 2020;20:110. https://doi.org/10.1007/s43452-020-00111-4.
- 18. Ferreira Serra G, Fernandes FAO, Alves de Sousa RJ, Noronha E, Ptak M. New hybrid cork-STF (Shear thickening fluid) polymeric composites to enhance head safety in micro-mobility accidents. Composite Struct. 2022;301:116138. https://doi.org/10.1016/j.compstruct.2022.116138.
- 19. Gurgen S, Fernandes FAO, de Sousa RJA, Kuşhan MC. Development of eco-friendly shock-absorbing cork composites enhanced by a non-newtonian fluid. Appl Compos Mater. 2021. https://doi.org/10.1007/s10443-020-09859-7.
- 20. Chavan N, Dhage A, Wale A, Thorave A, Rajdeo K, Kamble S, Ponrathnam S, Tambe S, Verma S. Novel shear thickening fluids possessing high shear rates using monodispersed silica nanoparticles and PEG. Polym Bull. 2023;80:13069-98. https://doi.org/10.1007/s00289-023-04696-7.
- 21. Haris A, Lee HP, Tay TE, Tan VBC. Shear thickening fluid impregnated ballistic fabric composites for shock wave mitigation. Int J Impact Eng. 2015;80:143-51. https://doi.org/10.1016/j.ijimpeng.2015.02.008.
- 22. Fahool M, Sabet AR. UV-visible assessment of hydrocluster formation and rheological behaviour in bimodal and mono-disperse shear thickening fluids. Rheol Acta. 2015;54:77-83. https://doi.org/10.1007/s00397-014-0821-z.
- 23. Hasanzadeh M, Mottaghitalab V, Rezaei M. Rheological and viscoelastic behavior of concentrated colloidal suspensions of silica nanoparticles: a response surface methodology approach. Adv Powder Technol. 2015;26:1570-7. https://doi.org/10.1016/j.apt.2015.08.011.
- 24. Xu Y, Chen X, Wang Y, Yuan Z. Stabbing resistance of body armour panels impregnated with shear thickening fluid. Compos Struct. 2017;163:465-73. https://doi.org/10.1016/j.compstruct.2016.12.056.
- 25. Yanen C, Solmaz MY, Aydoğmuş E, Arslanoğlu H. Effects of molecular weight of polyethylene glycol with size and ratio of fumed silica on rheological behavior of shear thickening fluid. Mater Chem Phys. 2024;312:128624. https://doi.org/10.1016/j.matchemphys.2023.128624.
- 26. Liu D-M. Particle packing and rheological property of highly-concentrated ceramic suspensions: φm determination and viscosity prediction. J Mater Sci. 2000;35:5503-7. https://doi.org/10.1023/A:1004885432221.
- 27. Liu X-Q, Bao R-Y, Wu X-J, Yang W, Xie B-H, Yang M-B. Temperature induced gelation transition of a fumed silica/PEG shear thickening fluid. RSC Adv. 2015;5:18367-74. https://doi.org/10.1039/C4RA16261G.
- 28. Bossis G, Brady JF. The rheology of Brownian suspensions. J Chem Phys. 1989;91:1866-74. https://doi.org/10.1063/1.457091.
- 29. Gurgen S, Kuşhan MC, Li W. The effect of carbide particle additives on rheology of shear thickening fluids. Korea-Aust Rheol J. 2016;28:121-8. https://doi.org/10.1007/s13367-016-0011-x.
- 30. Gurgen S, Li W, Kuşhan MC. The rheology of shear thickening fluids with various ceramic particle additives. Mater Des. 2016;104:312-9. https://doi.org/10.1016/j.matdes.2016.05.055.
- 31. Sheikhi MR, Gurgen S. Deceleration behavior of multi-layer cork composites intercalated with a non-Newtonian material. Archiv Civ Mech Eng. 2022;23:2. https://doi.org/10.1007/s43452-022-00544-z.
- 32. Feng X, Li S, Wang Y, Wang Y, Liu J. Effects of different silica particles on quasi-static stab resistant properties of fabrics impregnated with shear thickening fluids. Mater Des. 2014;64:456-61. https://doi.org/10.1016/j.matdes.2014.06.060.
- 33. Chatterjee VA, Dey P, Verma SK, Bhattacharjee D, Biswas I, Neogi S. Probing the intensity of dilatancy of high performance shear-thickening fluids comprising silica in polyethylene glycol. Mater Res Express. 2019;6:075702. https://doi.org/10.1088/2053-1591/ab1185.
- 34. Singh M, Verma SK, Biswas I, Mehta R. Effect of addition of silicone oil on the rheology of fumed silica and polyethylene glycol shear thickening suspension. J Polym Eng. 2019;39:48-57. https://doi.org/10.1515/polyeng-2018-0054.
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0d0ce85-fcf1-4466-92e7-2cd2be135aa5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.