PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Powiadomienia systemowe
  • Sesja wygasła!
Tytuł artykułu

Mechanical Properties of Bioactive Glass-Cordierite Composite

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Bioactive glass (BG) can be utilized as a replacement and regeneration material for orthopaedic and orthodontic. However, a load-bearing structure requires good mechanical properties to withstand high stress, in addition to good bioactivity properties. In this research, BG and cordierite (BG-cord) composite was fabricated to improve BG’s mechanical properties. The mechanical strength of the BG-cord was investigated. Both BG and cordierite were synthesized separately using the glass melting method. The synthesized BG and cordierite powders were used to fabricate BG-cord using a composition variation from 10 to 50 wt.%. The composite with 30 wt.% cordierite demonstrated the highest diametral tensile strength (DTS), 14.01 MPa.
Słowa kluczowe
Twórcy
  • Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Biomaterial Research Niche Group, 14300 Nibong Tebal, Penang, Malaysia
  • Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering, Biomaterial Research Niche Group, 14300 Nibong Tebal, Penang, Malaysia
  • Universiti Sains Malaysia, School of Materials and Mineral Resources Engineering,Biomaterial Research Niche Group, 14300 Nibong Tebal, Penang, Malaysia
Bibliografia
  • [1] l. Hench, Chronology of bioactive glass development and clinical applications, New J. Glas. Ceram. 2013, 67-73 (2013). Accessed: Dec. 01, 2016. [Online]. DOI: http://file.scirp.org/Html/2-1030072_30885.htm
  • [2] D. Bellucci, R. Salvatori, J. Giannatiempo, A. Anesi, S. Bortolini, V. Cannillo, A new bioactive glass/collagen hybrid composite for applications in dentistry, Materials (Basel), 12, 13, 2-7 (2019). DOI: https://doi.org/10.3390/ma12132079
  • [3] J.R. Jones, Review of bioactive glass: from Hench to hybrids, Acta Biomater. 9, 1, 4457-86, Jan. (2013). DOI: https://doi.org/10.1016/j.actbio.2012.08.023
  • [4] F. Baino, S. Hamzehlou, S. Kargozar, Bioactive glasses: Where are we and where are we going?, J. Funct. Biomater. 9, 1 (2018). DOI: https://doi.org/10.3390/jfb9010025
  • [5] Z. Goudarzi, N. Parvin, F. Sharifianjazi, Formation of hydroxyapatite on surface of SiO2-P2O5-CaO-SrO-ZnO bioactive glass synthesized through sol-gel route, Ceram. Int. 45, 15, 19323-19330 (2019). DOI: https://doi.org/10.1016/j.ceramint.2019.06.183
  • [6] A. Ardeshirylajimi et al., Enhanced osteoconductivity of polyether-sulphone nanofibres loaded with bioactive glass nanoparticles in in vitro and in vivo models, Cell Prolif. 48, 4, 455-464 (2015). DOI: https://doi.org/10.1111/cpr.12198
  • [7] W. Hong et al., Roles of strontium and hierarchy structure on the in vitro biological response and drug release mechanism of the strontium-substituted bioactive glass microspheres, Mater. Sci. Eng. C 107, July 2019, 110336 (2020). DOI: https://doi.org/10.1016/j.msec.2019.110336
  • [8] Y. Zhang, J. Luan, S. Jiang, X. Zhou, M. Li, The effect of amino-functionalized mesoporous bioactive glass on MC3T3-E1 cells in vitro stimulation, Compos. Part B Eng. 172, no. January, 397-405 (2019). DOI: https://doi.org/10.1016/j.compositesb.2019.05.104
  • [9] Q.Z. Chen, I.D. Thompson, A.R. Boccaccini, 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering, Biomaterials 27, 11, 2414-2425 (2006). DOI: https://doi.org/10.1016/j.biomaterials.2005.11.025
  • [10] N. Farhana, H. Mohamad, S. Noor, F. Mohd, N. Ahmad, Apatite formation on melt-derived bioactive glass powder based, Ceram. Int. 43, 15, 11676-11685 (2017). DOI: https://doi.org/10.1016/j.ceramint.2017.05.356
  • [11] D.C. Clupper, J.J. Mecholsky, G.P. LaTorre, D.C. Greenspan, Bioactivity of tape cast and sintered bioactive glass-ceramic in simulated body fluid, Biomaterials 23, 12, 2599-2606, Jun. (2002). DOI: https://doi.org/10.1016/s0142-9612(01)00398-2
  • [12] B. Zagrajczuk, M. Dziadek, Z. Olejniczak, K. Cholewa-Kowalska, M. Laczka, Structural and chemical investigation of the gel-derived bioactive materials, Ceram. Int. 43, no. May, 12742-12754 (2017). DOI: https://doi.org/10.1016/j.ceramint.2017.06.160
  • [13] D. Bellucci, A. Sola, L. Lusvarghi, V. Cannillo, Ceram. Int. 40, 3805-3808 (2014). DOI: https://doi.org/10.1016/j.ceramint.2013.08.018
  • [14] G. Yang, X. Yang, L Zhang, M. Lin, X. Sun, X. Chen, Z. Gou, Mater. Lett.75, 80-83 (2012). DOI: https://doi.org/10.1016/j.matlet.2012.01.122
  • [15] T. Kokubo, H.M. Kim, M. Kawashita, Biomaterials 24, 2161-2175 (2003). DOI: https://doi.org/10.1016/S0142-9612(03)00044-9
  • [16] M.M.S. Sanad, M.M. Rashad, E.S.A. Abdel-Aal, M.F. El-Shahat, K.W. Powers, Int. J. Appl. Ceram. Technol. 11, 864-871 (2014). DOI: https://doi.org/10.1111/ijac.12237
  • [17] P. Mengucci, G. Majni, A. De Benedittis, G. Biagini, Biomaterials 19, 1447-1450 (1998).
  • [18] A. Krajewski, A. Ravagliolo, M. Kirsch, G. Biagini, R. Solmi, M. Belmonte, C. Zucchini, M.G. Gandolfi, C. Castaldini, L. Rodriguez, R. Giardino, R. Mongiorgi, E. Roncari, L. Orlandi. J. Mater. Sci. Mater. Med. 7, 99-102 (1996). DOI: https://doi.org/10.1007/BF00058720
  • [19] L. Orlandi, R. Solmi, A. Krajew, A. Bearzatto, G. Biaginig, E. Ciccopiedil, A. Ravaglioli, Biomaterials 18, 955-961 (1997).
  • [20] J. Ma, C.Z. Chen, D.G. Wang, J.H. Hu, Ceram. Int. 37, 1637-1644 (2011). DOI: https://doi.org/10.1016/j.ceramint.2011.01.043
  • [21] N.M.S. Adzali, S.B. Jamaludin, M.N. Derman, Rev. Adv. Mater. Sci. 30, 262-266 (2012).
  • [22] Z.M. Al-Rashidy, M.M. Farag, N.A. Abdel Ghany, A.M. Ibrahim, W.I. Abdel-Fattah, Surf. Coatings Technol. 334, 479-490 (2018). DOI: https://doi.org/10.1016/j.surfcoat.2017.11.052
  • [23] A. Sola, D. Bellucci, V. Cannillo, A. Cattini, Surf. Eng. 27, 560-572 (2011). DOI: https://doi.org/10.1179/1743294410Y.0000000008
  • [24] S. Srinivasan, R. Jayasree, K.P. Chennazhi, S.V. Nair, R. Jayakumar, Carbohydr. Polym. 87, 274-283 (2012). DOI: https://doi.org/10.1016/j.carbpol.2011.07.058
  • [25] K.M.J. Aitasalo, J.M. Piitulainen, J. Rekola, P.K. Vallittu, Head Neck 36, 1391 (2014). DOI: https://doi.org/10.1002/HED
  • [26] A.R. Boccaccini, M. Erol, W.J. Stark, D. Mohn, Z. Hong, J.F. Mano, Compos. Sci. Technol. 70, 1764-1776 (2010). DOI: https://doi.org/10.1016/j.compscitech.2010.06.002
  • [27] K. Zhang, Q. Van Le, J. Compos. Compd. 2, 10-17 (2019).
  • [28] D. Bellucci, l. Desogus, S. Montinaro, R. Orrù, G. Cao, V. Cannillo, Innovative hydroxyapatite/bioactive glass composites processed by spark plasma sintering for bone tissue repair, J. Eur. Ceram. Soc. 37, 4, 1723-1733 (2017). DOI: https://doi.org/10.1016/j.jeurceramsoc.2016.11.012
  • [29] M. Karadjian et al., Biological properties of calcium phosphate bioactive glass composite bone substitutes: Current experimental evidence, Int. J. Mol. Sci. 20, 2, 1-22 (2019). DOI: https://doi.org/10.3390/ijms20020305
  • [30] K. Morinaga, H. Takebe, Phase relations and Transformations in Advanced Ceramic Materials, High Temp. Mater. Process. 22, 3-4, 141-150 (2003). DOI: https://doi.org/10.1515/HTMP.2003.22.3-4.141
  • [31] N. Farhana, H. Mohamad, S. Noor, F. Mohd, Characterization on melt-derived bioactive glass powder from, J. Non-Crystalline Solids J. 462, 23-31 (2017). DOI: https://doi.org/10.1016/j.jnoncrysol.2017.01.040
  • [32] T.T. Swe, H. Mohamad, K.A. Shariff, A.A. Thant, Fabrication of sol-gel derived new quaternary silicate Bioglass S55P4, AIP Conf. Proc. 2068, no. January, (2019). DOI: https://doi.org/10.1063/1.5089369
  • [33] L.A. Adams, E.R. Essien, A.T. Adesalu, M.L. Julius, Bioactive glass 45S5 from diatom biosilica, J. Sci. Adv. Mater. Devices 2, 4, 476-482 (2017). DOI: https://doi.org/10.1016/j.jsamd.2017.09.002
  • [34] M. Rahimian, N. Ehsani, N. Parvin, H. Reza Baharvandi, The effect of particle size, sintering temperature and sintering time on the properties of Al-Al2O3 composites, made by powder metallurgy, J. Mater. Process. Technol. 209, 14, 5387-5393 (2009). DOI: https://doi.org/10.1016/j.jmatprotec.2009.04.007
  • [35] Z. Balak, M. Zakeri, M.R. Rahimipur, E. Salahi, H. Nasiri, Effect of open porosity on fl exural strength and hardness of ZrB2-based composites, Ceram. Int. 41, 7, 8312-8319 (2015). DOI: https://doi.org/10.1016/j.ceramint.2015.02.143
Uwagi
1. The authors would also like to extend their recognition to the Ministry of Higher Education Malaysia for Fundamental Research Grant Scheme (FRGS) with Project Code : FRGS/1/2019/TK05/USM/02/6.
2. Opracowanie rekordu ze środków MNiSW, umowa nr POPUL/SP/0154/2024/02 w ramach programu "Społeczna odpowiedzialność nauki II" - moduł: Popularyzacja nauki (2025)
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0cf1119-f9e0-496a-b09e-65316f9dab32
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.