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Abstract. This paper presents the development and evaluation of a new approach toward the optimization of 3D local orientation map calculation 

in the Matlab framework. This new approach can be detailed as: optimize eigenvector calculation for PCA analysis of X-ray micro tomography images 
of lamellar Titanium alloys image. We use two different methods to find the eigenvector of the largest eigenvalue and compare them with the Matlab 

built-in function (eigs). The results show a steep decrease of the calculation time using the authors' method compared to the Matlab built-in function. 
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OPTYMALIZACJA OBLICZEŃ TRÓJWYMIAROWYCH LOKALNYCH MAP KIERUNKOWYCH 

Z UŻYCIEM ŚRODOWISKA OBLICZENIOWEGO MATLAB 

Streszczenie. W artykule przedstawiono rozwój i ocenę nowego podejścia dotyczącego optymalizacji obliczeń 3D lokalnych orientacji map w środowiska 

Matlab. Zastosowano dwie różne metody wyznaczania wektora własnego największej wartości własnej. Wyniki są porównywane z wynikami otrzymanymi 

przy pomocy wbudowanych w pakiecie Matlab funkcji wyznaczające wektory i wartości własne. Wyniki porównania pokazują redukcję czasu obliczeń 
przy użyciu autorskiej metody w stosunku do funkcji wbudowanej w Matlab. 

Słowa kluczowe: orientacja lokalna gradientu, analiza PCA, wartość własna, wektor własny, macierz bezwładności 

Introduction 

There is a non-negligible amount of structured materials that 

show a local orientation in their microstructures. For instance the 

microstructure of titanium alloys can appear with a 3dimensional 

lamellar texture [1], or fiber composite materials can be designed 

with a woven pattern like textile fabrics (see fig. 1). They can be 

classified as texture materials and one may need to locally 

estimate the orientation of the features for further quality or 

property analysis. These orientation can be extracted from 2D/3D 

images and popular image processing method, which is based on 

gradient estimation and its matrix representation using matrix of 

inertia [4] or Hessian matrix [2] are frequently used. Next the local 

orientation can be calculated using principal component analysis 

(or matrix diagonalization), where the eigenvector of the 

largest/smallest eigenvalue represents the local direction. The 

main problem that arises from such methodology is the very time 

consuming process of matrix reduction as it is done with 

pixel/voxelwise operations. For instance, if one assume a 3D 

image of size 5003, the Matlab built-in function (eigs), which uses 

the Arnoldi iteration method [6] to obtain the 

eigenvalues/eigenvectors, will have to be run sequentially 125 

millions times, which is computationally very slow.  

 

Fig. 1. Examples of microstructure, a) fibrous microstructure of glass fiber 

reinforced polymers (GFRP) b) lamellar microstructure of Titanium alloys (Ti) 

Therefore, this paper aims at proposing alternative methods to 

speed up the calculation of eigenvector. The main objective is to 

use matrix operations and avoid loops, which are known as the 

main slowing elements in algorithms. The two proposed 

approaches are compared with the standard method based on the 

Matlab built-in function (eigs). Both eigenvector maps and 

computation times are compared to testify the usefulness of the 

new approaches. The aim of this paper is introducing methods to 

optimization of 3D local orientation. These methods are tested in 

2D and 3D image of X-ray micro tomographic images of Titanium 

lamellar alloys (Ti) [1], and glass fiber reinforced polymers 

(GFRP) [7]. 

1. Algorithms 

PCA, or Principal Component Analysis, is the most important 

3-dimensionality reduction technique. This technique was initially 

employed by statisticians to reduce the variables into a lower 

number of orthogonal variables (factors), which are also called 

eigenvectors. In this paper we will calculate the eigenvectors and 

eigenvalues of the data covariance matrix using three methods. 

The eigenvector corresponding to the largest eigenvalue is the 

direction of greatest variation. The covariance matrix is based on 

the average gradient (first derivative) defined in the 

neighbourhood W(p) of each pixel/voxel p composing the 2D/3D 

image I. In a more formal way, let consider the Definition domain 

Δ(N1, N2, N3)= {1,2,… N1}x{1,2,… N2}x{1,2,… N3} of an input 

volumetric image I: Δ (N1, N2, N3)→{0,1,2,…,255} 

To find the principle orientation of an image we use the matrix 

of inertia, we consider a neighbouring window W of size sn (in n-

dimensional space Rn) located around every point (i,j,k)  Δ, 

inside this window the matrix of inertia Jijk is given by (in the 3D 

case): 
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where .
 
denotes the averaging operation in the neighbourhood 

W (usually performed using convolution with a matrix of 1 in the 

Fourier domain for decrease processing time, especially in the 3D 

space). 

At that stage we obtain a n-D map of matrix of inertia J. Since 

Jijk is symmetric, each point in the n-D space is represented 

by a vector of size n(n+1)/2. For instance, in the 3D case, 

this vector is of length 6 and can be represented as follows for a 

point (i,j,k)  Δ:  

   (2) 

and the map of matrix of inertia takes the following form: 

  (3) 

with 
  
A = a

ijk{ }  where 
  
a

ijk
= a

ijk
, 
  
B = b

ijk{ } where 
  
b

ijk
= b

ijk
 

and so on.  Th
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In what follows, we will present the 2 proposed methods that 

perform the eigenvector calculation on J. 

1.1. Method 1: analytical method 

This method relies on the determinant solution. Let M be an 

n-by-n matrix. So λ is an eigenvalue if: 

 
  0Det  IM   (4) 

where I is the n-by-n identity matrix. 

This equation gives us a characteristic polynomial 

in λ of degree n, and the roots of this equation are the eigenvalues. 

In three-dimensional space we will get a cubic equation 

(a λ3+b λ2+c λ+d=0), that is solvable analytically using the well-

known Cardano method published in 1545 [3]:  

   
x = q+ q2 + r - p2( )

3
3 + q- q2 + r - p2( )

3
3 + p (5) 

where: 

   p= -b 3a  

   
q= p3 + bc- 3ad( ) 6a2

 

   r = c 3a  
In the case of J (eq. 3), the set of variables defining the cubic 

equation are:  

   a= -1 

  b= A +B+C 

  

  
where  denotes the Hadamart product (i.e. an element-wise 

multiplication). Knowing one root of the cubic equation 

representing the diagonalization of the tensor of inertia, it is 

straightforward to estimate the 2 other roots by reducing the 

polynomial by one degree. 

What is important to notice here is that in the previous 

equations of the eigenvalue, each parameter can be considered as a 

3D matrix, where each point corresponds to the local eigenvalue 

from the input image, following the PCA reduction of the tensor 

of inertia. This approach is well adapted for n3. For larger 

dimension, the next method is more appropriate. 

  

Fig. 2. Flow chart of the power iteration method 

1.2. Method 2: power iteration 

We implement this method to find iteratively the largest 

eigenvalue and its corresponding eigenvector from an initial 

eigenvector guess [5] (see Fig. 2 for the general power iteration 

flow chart). The power iteration algorithm is frequently used in 

the cases when the first couple of eigenvalues need to be 

computed, as in the case of searching the main spatial feature 

orientation. As in the previous method, the input is the map of 

matrix of inertia J. The iteration step is initially performed in 

parallel on each voxel yielding a vector corresponding to the local 

matrix of inertia Jijk. However, the number of points to be 

considered in the next iteration is decreased as the Euclidean 

distance between the eigenvectors at 2 successive steps is smaller 

than a given tolerance (typically 10-3). Obviously, the number of 

updates of local eigenvector decreases as the number of iteration 

increases. This approach speeds up the iteration procedure and 

therefore the overall execution time of the algorithm. 

1.3. Method 3: Matlab built-in function 

In this method we calculate the eigenvalue and the eigenvector 

by using the Matlab built-in function eigs. 

Eigs(A) solves the eigenvalue problem using the Arnoldi 

iteration [6]. While the approach is well suited for large sparse 

matrix, it is not designed to solve in parallel a large set of 

eigenvalue/vector decompositions, as in the case of the two 

previous methods. 

Let consider, as previously, every point (i,j,k)  Δ of an input 

image I and the corresponding matrix of inertia Jijk. The pseudo 

code is the following: 

For i  1 to N1 

 For j  1 to N2 

  For k  1 to N3 

   [xijk, ijk]  eigs(Jijk) 

where xijk and ijk are the eigenvectors and eigenvalues of Jijk. 

2. Results 

The comparison between the 3 methods is done in the 

following way. The results are verified qualitatively by comparing 

the map of eigenvector projection with respect to the main axis 

[001] (i.e. z-axis of the 3D image). Then comparison about the 

CPU time (i.e. execution time) is performed to estimate which 

method is the most appropriate to estimate local orientation in 3D. 

Fig. 3 shows the result about the projection map for the 3 

tested methods. Once can clearly see that they give very similar 

results. This has been done in the case of an input image of size 

1003. 

 

Fig. 3. a) the input image; b) the projection map calculated using method #1 

(analytical method); c) the projection map calculated using method #2 (power 

iteration); d) the projection map calculated using method #3 (Matlab built-in 

function). The colour bar correspond to the projection angle (in degree) 
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One can also judge the accuracy of the calculation looking at 

the mean square error (MSE) of the 3D projection maps between 

method #3 (taken here as the reference method) and methods #1 

and #2. In the case of the comparison between method #1 and #3, 

MSE is ~10-11, while it is 0.09 between method #2 and #3. In the 

latter case, this MSE result is obtained for a tolerance value of 10-

3. This is considered as a good compromise between the execution 

time and the MSE, as shown in Fig. 4. Again, this calculation has 

been done in the case of an input image of size 1003. 

 

Fig. 4. Evolution of MSE and CPU time with respect to the tolerance, for an input 

image of size 1003 

Fig. 5 shows the evolution of the computation time as a 

function of the number of voxels of an input image, for the 3 

tested methods. One can see that the three evolutions are linear (at 

least for the given range of image sizes that are lower than 1003), 

but the fastest is clearly the method #1, which takes advantages of 

the analytical approach for the Eigen decomposition based on 

Hadamart product. Method #3 is particularly slow because of the 

algorithm that estimates voxel-by-voxel the 

eigenvector/eigenvalue using the Matlab built-in function eigs. 

 

Fig. 5. Evolution of the CPU time with respect to the number of voxels for the 3 tested 

methods 

Table 1 presents the results of our study, which once again 

shows that the calculation time of the determinant solution (i.e. 

method #1) is the smallest, which justifies the use of such method 

to accurately calculate main orientation of features in 3D images 

in the smallest time. This choice is also justified by the 

corresponding MSE value presented above. Also the table reveals 

that in average, method #1 is faster than method #2 by about 10 

times, while it is ~500 times faster than method #3. Note that in 

this table, we disregard the calculation time for the Matlab built-in 

function (method #3) when the number of element is more than 

1003 because of its extremely long processing time for larger data 

set. 

Table 1. Summary of execution time for the 3 tested methods and different 3D images 

sizes 

Number 

of 

elements 

CPU time for method 

#1 (analytical method) 

(s) 

CPU time for 

method #2 (power 

iteration) (s) 

CPU time for 

method #3 (Matlab 

built-in function) (s) 

503 0.13  1.13 66.2 

1003 1.6 16 517.3 

2003 10.6 166 - 

4003 231.2 2621.5 - 

 

Table 2 summarises the results and the properties of the 3 

methods. In the case of matrix of inertia of dimension n3, 

method #1 is the best choice, considering both its computational 

time and accuracy. However, for largest dimensions, the power 

iteration should be considered, even if the accuracy depends on 

the chosen tolerance level. However, perspective work will aim at 

generalizing the Arnoldi/Lanczos method [5,6], which is used in 

the Eigs function (i.e. incorporating Hadamart product for matrix 

operations) to circumvent the main execution time drawback. 

Table 2. summary of the advantages and disavantages of the 3 tested methods 

Methods Advantages Disadvantages 

Method1: The 

determinant 

solution 

 very fast 

 analytical method 

 exact solution 

 limited to 2D/3D case 

 need important RAM 

Method2: 

power 

iteration 

 locate the dominant 

eigenvalue 

 n-D (even quite complex 

to program for n>3)  

 iterative method convergence 

speed depends on tolerance  

 need important RAM  

Method3: 

Matlab built-

in functions  

 easy programming  

 n-D 

 exact solution 

 very large CPU time 

 

In all cases, the computation has been done on a server 

equipped with 2 IntelXeon processors (12M Cache, 2.53 GHz, 

4 cores, 8 logical threads) and 24 GB of RAM. 

3. Conclusion 

 The current paper has presented a comparison between three 

methods to calculate the largest eigenvalue and corresponding 

eigenvector for large set of matrix of inertia calculated for 3D 

images. The comparison shows that the first authors' method 

based on analytical approach is the fastest and most accurate 

method compared to the two other methods (power iteration, and 

the Matlab built-in functions) with similar accuracy. This is of 

great importance when dealing with large data set as the one in 3D 

tomography images. 
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