PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Performance analysis of IRI 2016 model TEC predictions over Northern and Southern Hemispheric IGS stations during descending phase of solar cycle 24

Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Global Positioning System (GPS) is an efective tool for monitoring the Earth’s ionosphere. This paper concerns with temporal and spatial variations of ionospheric total electron content (TEC) at RAMO, Israel (geographic coordinates: 30.597o N, 34.76o E; geomagnetic coordinates: 27.17o N, 112.40o E), and ZAMB, Zambia (geographic coordinates: 15.42o S, 28.31o E; geomagnetic coordinates: 16.98o S, 98.67o E) for the descending phase of solar cycle-24. The VTEC estimated from GPS measurements and VTEC values modeled from the IRI-2016 model are obtained over both the GPS stations, i.e., RAMO station, in Northern Hemisphere (NH) and ZAMB station in Southern Hemisphere (SH). The diurnal, seasonal, annual, and solar cycle variations in TEC are investigated during 2016–2018. Also, a comparative study is performed between VTEC derived from GPS observations and International Reference Ionosphere-2016 (IRI-2016) model using the statistical analysis. It has been observed that the observed and modeled maximum VTEC decreases with the declining phase of solar cycle-24 over both the stations. The semiannual patterns are noticed in VTEC values of both the IRI-2016 model and GPS observations for all the years, i.e., 2016–2018. At RAMO station, seasonal analysis depicted a year-wise decrease in maximum TEC as follows March Equinox (Mar-Equ), September Equinox (Sep-Equ), December Solstice (Dec-Sol), and June Solstice (Jun Sol). It is observed from the monthly average estimations of the IRI-2016 model that it has relatively more overestimations of VTEC values over RAMO station in NH than over ZAMB in SH during 2016–2018. However, the IRI-2016 model has underestimated the GPS-VTEC values from June–September 2018 over NH, RAMO station. The root-mean-square error (RMSE) values of the IRI-2016 model delineate that the model has more RMSE during March Equinox than September Equinox, whereas these RMSEs are recorded high over NH (RAMO) than SH (ZAMB). At RAMO, the IRI-2016 model has shown high RMSE values during the June solstice compared to the December solstice. On the other hand, at ZAMB, the highest RMSE values are observed during the December solstice than June solstice. Ionolab-TEC and GIM-TEC also considered over both the stations for the analysis. The IRI-2016 model predictions are in good agreement with GPS-VTEC values over SH (ZAMB) compared to NH (RAMO).
Czasopismo
Rocznik
Strony
1509--1527
Opis fizyczny
Bibliogr. 55 poz.
Twórcy
  • Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Greenfelds, Vaddeswaram, Guntur 522502, India
  • Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Greenfelds, Vaddeswaram, Guntur 522502, India
  • Department of Electronics and Communication Engineering, Koneru Lakshmaiah Education Foundation, Greenfelds, Vaddeswaram, Guntur 522502, India
Bibliografia
  • 1. Abdullah M, Zain A, Ho YH, Sabirin Abdullah S (2009) TEC and scintillation study of equatorial ionosphere A month campaign over sipitang and parit raja stations. Malaysia, Am J Eng Appl Sci 2(1):44–49
  • 2. Akala A, Doherty P, Carrano C, Valladares C, Groves K (2012) Impacts of ionospheric scintillations on GPS receivers intended for equatorial aviation applications. Radio Sci 47(4):1–11
  • 3. Akala A, Somoye E, Adewale A, Ojutalayo E, Karia S, Idolor R, Okoh D, Doherty P (2015) Comparison of GPS-TEC observations over Addis Ababa with IRI-2012 model predictions during 2010–2013. Adv Space Res 56(8):1686–1698
  • 4. Andima G, Amabayo EB, Jurua E, Cilliers PJ (2019) Modeling of GPS total electron content over the African low-latitude region using empirical orthogonal functions. Ann Geophys 37(1):65–76. https://doi.org/10.5194/angeo-37-65-2019
  • 5. Ansari K, Corumluoglu O, Panda SK (2017) Analysis of ionospheric TEC from GNSS observables over the Turkish region and predictability of IRI and SPIM models. Astrophys Space Sci 332:65
  • 6. Ansari K, Park K-D, Panda SK (2019) Empirical orthogonal function analysis and modeling of ionospheric TEC over South Korean region. Acta Astronaut 161:313–324
  • 7. Bagiya MS, Joshi H, Iyer K, Aggarwal M, Ravindran S, Pathan B (2009a) TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Annal Geophys 27(3):1047–1057
  • 8. Bagiya MS, Joshi HP, Iyer KN, Aggarwal M, Ravindran S, Pathan BM (2009b) TEC variations during low solar activity period (2005–2007) near the equatorial ionospheric anomaly crest region in India. Ann Geophys 27(3):1047–1057
  • 9. Bailey GJ, Su YZ, Oyama K-I (2000) Yearly variations in the low-latitude topside ionosphere. Ann Geophys 18(7):789–798. https://doi.org/10.1007/s00585-000-0789-0
  • 10. Bhuyan P, Borah RR (2007) TEC derived from GPS network in India and comparison with the IRI. Adv Space Res 39(5):830–840
  • 11. Bilitza D, Reinisch BW (2008) International reference ionosphere 2007 improvements and new parameters. Adv Space Res 42(4):599–609
  • 12. Bittencourt J, Pillat V, Fagundes P, Sahai Y, Pimenta A (2007) LION A dynamic computer model for the low-latitude ionosphere. Ann Geophys 25(11):2371–2392
  • 13. Bowman G (1990) A review of some recent work on mid-latitude spread-F occurrence as detected by ionosondes. J Geomagn Geoelectr 42(2):109–138
  • 14. Chakraborty S, Hajra R (2009) Electrojet control of ambient ionization near the crest of the equatorial anomaly in the Indien zone. Ann Geophys 27(1):93–105
  • 15. Devireddy K, Narsetty S, Ramavath AK, Perumalla NK (2021) Validation of the IRI-2016 model with Indian NavIC data for future navigation applications. IET Radar, Sonar Navig 15(1):37–50
  • 16. Endeshaw L (2020) Testing and validating IRI-2016 model over Ethiopian ionosphere. Astrophys Space Sci 365(3):1–13
  • 17. Evans J, Holt J, Wand R (1983) A differential-Doppler study of traveling ionospheric disturbances from Millstone Hill. Radio Sci 18(3):435–451
  • 18. Eyelade VA, Adewale AO, Akala AO, Bolaji OS, Rabiu AB (2017) Studying the variability in the diurnal and seasonal variations in GPS total electron content over Nigeria. Ann Geophys 35(3):701
  • 19. Gampala S, Ratnam DV (2017) Short-term forecasting of ionospheric total electron content over a low-latitude global navigation satellite system station. IET Radar, Sonar Navig 11(8):1309–1320
  • 20. Habarulema JB, McKinnell L-A, Cilliers PJ (2007) Prediction of global positioning system total electron content using neural networks over Southern Africa. J Atmos Solar-Terr Phys 69(15):1842–1850
  • 21. Hansen, A., Blanch, J., Walter, T., and Enge, P. (2000) Ionospheric correlation analysis for WAAS quiet and stormy, In: proceedings of ION GPS, Salt Lake City, UT
  • 22. Hathaway DH, Upton LA (2016) Predicting the amplitude and hemispheric asymmetry of solar cycle 25 with surface flux transport. J Geophys Res Space Phys 121(10):710–744
  • 23. Hofmann-Wellenhof, B., Lichtenegger, H., and Wasle, E. (2007) GNSS–global navigation satellite systems GPS, GLONASS, Galileo, and more, Springer Science & Business Media.
  • 24. Karia SP, Patel NC, Pathak KN (2019) On the performance of IRI-2016 to predict the North-South asymmetry of the equatorial ionization anomaly around 73° E longitude. Adv Space Res 63(6):1937–1948
  • 25. Li, Shuhui, Jiajia Xu, Houxiang Zhou, Jinglei Zhang, Zeyuan Xu, and Mingqiang Xie. (2019) Global TEC prediction performance assessment of IRI-2016 model based on EOF decomposition. Annales Geophysicae Discussions 1–17.
  • 26. Liu, L., Wan, W., Ning, B., Pirog, O.M. and Kurkin, V.I., (2006). Solar activity variations of the ionospheric peak electron density. J Geophys Res: Space Phys, 111(A8).
  • 27. Liu L, Wan W, Ning B, Zhang M-L (2009) Climatology of the mean total electron content derived from GPS global ionospheric maps. J Geophys Res: Space Phys. https://doi.org/10.1029/2009JA014244
  • 28. Mallika IL, Ratnam DV, Ostuka Y, Sivavaraprasad G, Raman S (2019) Implementation of hybrid ionospheric TEC forecasting algorithm using PCA-NN method. IEEE J Sel Top Appl Earth Obs Remote Sens 12(1):371–381
  • 29. Mehmood M, Filjar R, Saleem S, Shah M, Ahmed A (2021) TEC derived from local GPS network in Pakistan and comparison with IRI-2016 and IRI-PLAS 2017. Acta Geophysica 69(1):381–389
  • 30. Mengistu E, Damtie B, Moldwin MB, Nigussie M (2018) Comparison of GPS-TEC measurements with NeQuick2 and IRI model predictions in the low latitude East African region during varying solar activity period (1998 and 2008–2015). Adv Space Res 61(6):1456–1475
  • 31. Mengistu E, Moldwin MB, Damtie B, Nigussie M (2019) The performance of IRI-2016 in the African sector of equatorial ionosphere for different geomagnetic conditions and time scales. J Atmos Solar-Terr Phys 186:116–138
  • 32. Mengistu Tsidu G, Melaku Zegeye M (2020) Comparison of quiet-time ionospheric total electron content from the IRI-2016 model and from gridded and station-level GPS observations. Ann Geophys 38:725–748. https://doi.org/10.5194/angeo-38-725-2020
  • 33. Millward G, Rishbeth H, Fuller-Rowell T, Aylward A, Quegan S, Moffett R (1996) Ionospheric F 2 layer seasonal and semiannual variations. J Geophys Res Space Phys 101(A3):5149–5156
  • 34. Moffett R, Hanson W (1965) Effect of ionization transport on the equatorial F-region. Nature 206(4985):705–706
  • 35. Olatunji EO (1967) The total columnar electron content of the equatorial ionosphere. J Atmos Terr Phys 29(3):277–285
  • 36. Raghunath S, Ratnam DV (2017) Maximum-minimum eigen detector for ionospheric irregularities over low-latitude region. IEEE Geosci Remote Sens Lett 14(6):901–905. https://doi.org/10.1109/LGRS.2017.2687079
  • 37. Rao PR, Krishna SG, Niranjan K, Prasad DSVVD (2006) Temporal and spatial variations in TEC using simultaneous measurements from the Indian GPS network of receivers during the low solar activity period of 2004–2005. Ann Geophys 24(12):3279–3292
  • 38. Ratnam DV, Sivavaraprasad G, Devi NL (2017) Analysis of ionosphere variability over low-latitude GNSS stations during 24th solar maximum period. Adv Space Res 60(2):419–434
  • 39. Ratnam DV, Vishnu TR, Harsha PBS (2018) Ionospheric gradients estimation and analysis of S-band navigation signals for NAVIC system. IEEE Access 6:66954–66962
  • 40. Ratnam DV, Otsuka Y, Sivavaraprasad G, Dabbakuti JK (2019) Development of multivariate ionospheric TEC forecasting algorithm using linear time series model and ARMA over low-latitude GNSS station. Adv Space Res 63(9):2848–2856
  • 41. Rishbeth H (1998) How the thermospheric circulation affects the ionospheric F2-layer. J Atmos Solar-Terr Phys 60(14):1385–1402
  • 42. Seemala, G. (2011) GPS-TEC analysis application, Tech Rep, Inst for Sci Res., USA.
  • 43. Sezen U, Arıkan F, Arikan O, Ugurlu O, Sadeghimorad A (2013) Online, automatic, near-real time estimation of GPS-TEC: IONOLAB-TEC, Space. Weather 11(5):1–9
  • 44. Sharma SK, Ansari K, Panda SK (2018) Analysis of ionospheric TEC variation over Manama, Bahrain, and comparison with IRI-2012 and IRI-2016 models. Arab J Sci Eng 43(7):3823–3830
  • 45. Shi C, Zhang T, Wang C, Wang Z, Fan L (2019) Comparison of IRI-2016 model with IGS VTEC maps during low and high solar activity period. Result Phys 12:555–561
  • 46. Sivavaraprasad G, Deepika VS, SreenivasaRao D, Ravi Kumar M, Sridhar M (2020) Performance evaluation of neural network TEC forecasting models over equatorial low-latitude Indian GNSS station. Geod Geodyn 11(3):192–201
  • 47. Svalgaard L, Cliver EW, Kamide Y (2005) Sunspot cycle 24 smallest cycle in 100 years? Geophys Res Lett. https://doi.org/10.1029/2004GL021664
  • 48. Szuszczewicz E, Blanchard P, Wilkinson P, Crowley G, Fuller-Rowell T, Richards P, Abdu M, Bullett T, Hanbaba R, Lebreton J (1998) The first real-time worldwide ionospheric predictions network: an advance in support of spaceborne experimentation, on-line model validation, and space weather. Geophys Res Lett 25(4):449–452
  • 49. Tariku, Y.A, (2018). Variability of TEC and improvement of performance of the IRI model over Ethiopia during the high solar activity phase. Ann Geophys Discuss, 1–28.
  • 50. Tariku YA (2019) Mid latitude ionospheric TEC modeling and the IRI model validation during the recent high solar activity (2013–2015). Adv Space Res 63(12):4025–4038
  • 51. Tariku YA (2020) Comparison of performance of the IRI 2016, IRI Plas 2017, and NeQuick 2 models during different solar activity (2013–2018) years over South American sector. Radio Sci 55(8):1–17. https://doi.org/10.1029/2019RS007047
  • 52. Tariq AM, Shah M, Ulukavak M, Iqbal T (2019) Comparison of TEC from GPS and IRI-2016 model over different regions of Pakistan during 2015–2017. Adv Space Res 64(3):707–718
  • 53. Mendillo M, Huang CL, Pi X, Rishbeth H, Meier R (2005) The global ionospheric asymmetry in total electron content. J Atmos Solar-Terr Phys 67(15):1377–1387. https://doi.org/10.1016/j.jastp.2005.06.021
  • 54. Wei, N. Y., Bahari, S. A., Abdullah, M., and Yatim, B. (2009) Regional ionosphere maps over Malaysia during solar minimum, 161–165.
  • 55. Wu C-C, Fry C, Liu J-Y, Liou K, Tseng C-L (2004) Annual TEC variation in the equatorial anomaly region during the solar minimum September 1996–August 1997. J Atmosp and Solar-Terr Phys 66(3–4):199–207
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0c2d2f0-97ac-4694-8bb9-e8247f20ded8
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.