Tytuł artykułu
Autorzy
Treść / Zawartość
Pełne teksty:
Identyfikatory
Warianty tytułu
Variability of the hydraulic conductivity in the hyporheic zone in the light of laboratory research
Konferencja
Współczesne Problemy Hydrogeologii ( XVIII; 2017; 8–10.11.2017; Wojanów , Polska)
Języki publikacji
Abstrakty
The interaction between surface water and groundwater throughout the hyporheic zone determines the diurnal water level fluctuations in springs, streams and lakes. The previous studies have listed evapotranspiration, variability of hydraulic conductivity in the hyporheic zone, melting andfreeze-thawing processes, thermal expansion and water viscosity among the factors responsible for the water level diurnal fluctuations. The aim of the research was to investigate the variability of hydraulic conductivity in the hyporheic zone and its impact on the diurnal fluctuations of the water level. Experimental series were performed in laboratory conditions using seepage columns. Four types of sand sediments, with a hydraulic conductivity ranging from 6x10-6 to 5x10-4 m/s, were tested. The obtained values of hydraulic conductivity appeared to depend on the sand grain size, temperature, the direction of the hydraulic gradient, and the fluidization of the sediment (flowing sand). In all tests, higher hydraulic conductivity values were observed when water was set to flow in the direction opposite to gravity (flow up) rather than downward (flow down). In the sediments, which have not reached the state of fluidization, with an increase of the hydraulic gradient, values of hydraulic conductivity were two times higher during flow up than in the case of flow down. In the case of sediments being fluidized, the obtained values of hydraulic conductivity were roughly 3 times higher. The initiation of the fluidization process has been observed at the hydraulic gradient close to one. The results of laboratory experiments allow for a better understanding of the factors that have impact on diurnal fluctuations of the water level, especially when seepage of groundwater is present. Fluidization of the hyporheic zone after precipitation or thawing events may inhibit diurnal fluctuations.
Czasopismo
Rocznik
Tom
Strony
1115--1120
Opis fizyczny
Bibliogr. 27 poz., rys., tab., wykr.
Twórcy
autor
- Wydział Nauk Geograficznych i Geologicznych, Uniwersytet im. Adama Mickiewicza w Poznaniu, ul. Krygowskiego 10, 61-680 Poznań
autor
- Wydział Nauk Geograficznych i Geologicznych, Uniwersytet im. Adama Mickiewicza w Poznaniu, ul. Krygowskiego 10, 61-680 Poznań
autor
- Wydział Matematyki, Fizyki i Techniki, Uniwersytet Kazimierza Wielkiego w Bydgoszczy, ul. M.K. Ogińskiego 16, 85-092 Bydgoszcz
Bibliografia
- 1. ANDRZEJEWSKA A. 2007 - Porównanie terminów początku i końca okresu ewapotranspiracji z wód podziemnych z meteorologicznymi okresami wegetacji. WPH, 13 (2): 233-241.
- 2. BRUNKE M., GONSER T. 1997 - The ecological significance of exchange processes between rivers and groundwater. Freshw. Biol., 37: 1-33.
- 3. BRUNKE M., GONSER T., GRIEDER E. 1998 - Influence of surface and subsurface flow on distribution of particulate organic matter and inorganic fine particles in perialpine stream sediments. [W:] Conf. Hydrology, Water Resources and Ecology in Headwaters: 371-378.
- 4. CADOL D., KAMPF S., WOHL E. 2012 - Effects of evapotranspiration on baseflow in a tropical headwater catchment. J. Hydrol., 462-463: 4-14.
- 5. CALVER A. 2001 - Riverbed permeabilities. Information from pooled data. Ground Water, 39: 546-553.
- 6. CZIKOWSKY J.M., FITZJARRALD D.R. 2004 - Evidence of seasonal changes in evapotranspiration in eastern US hydrological records. J. Hydromet., 5: 974-988.
- 7. DANIELOPOL D.L., MARMONIER P. 1992 - Aspects of research on groundwater along the Rhone, Rhine and Danube. Regul. Rivers, 7: 5-16.
- 8. DARCY H. 1856 - Les fontaines poublique de la ville de Dijon. Paris, s. 648.
- 9. DOBEK M. 2007 - Reakcja zwierciadła wód podziemnych na opad atmosferyczny w latach 1961-1981 w wybranych punktach Wyżyny Lubelskiej. Annales Universitatis Mariae Curie-Skłodowska Lublin-Polonia, Sekcja E, LXII: 49-55.
- 10. DUFF J.H., TRISKA F.J. 2000 - Nitrogen Biogeochemistry and surface-subsurface exchange in streams. [W:] Jones J.B., Mulholland P.J. (red.), Streams and ground waters. Academic Press, San Diego, USA: 197-220.
- 11. FREEZE R.A., CHERRY J.A. 1979 - Groundwater. Prentice-Hall, Englewood Cliffs, s. 604.
- 12. GIBERT J. 1992 - Groundwater ecology from the perspective of environmental sustainability. Proceedings of the first international conference on groundwater ecology. [W:] Stanford J.A., Simons J. (red.), American Water Resources Association, Bethesda, MD: 3-13.
- 13. GRIBOVSZKI Z., KALICZ P., KUCSARA M. 2006 - Streamflow characteristics of two forested catchments in Sopron Hills. Acta Silvatica et Lignaria Hungarica, 2: 81-92.
- 14. GRIBOVSZKI Z., KALICZ P., SZILAGYI J., KUCSARA M. 2008 - Riparian zone evapotranspiration estimation from diurnal groundwater level fluctuations. J. Hydrol., 349: 6-17.
- 15. GRIBOVSZKI Z., SZILAGYI J., KALICZ P. 2010 - Diurnal fluctuations in shallow groundwater levels and streamflow rates and their interpretation - A review. J. Hydrol., 385: 371-383.
- 16. HARVEY J.W., BENCALA K.E. 1993 - The effect of streambed topography on surface-subsurface water exchange in mountain catchments. Water Resources Research, 29: 89-98.
- 17. HARVEY J.W., WAGNER B.J. 2000 - Quantifying hydrologic interactions between streams and their subsurface hyporheic zones. [W:] Jones J.B., Mulholland P.J. (red.), Streams and ground waters. Academic Press, San Diego, USA: 3-44.
- 18. JEKATERYNCZUK-RUDCZYK E. 2007 - Strefa hyporeiczna, jej funkcjonowanie i znaczenie. Kosmos. Problemy Nauk Biologicznych, 56: 181-196.
- 19. MARCINIAK M., SZCZUCIŃSKA A. 2015 - Determination of diurnal water level fluctuations in headwaters. Hydrol. Res., 47: 888-901.
- 20. MAZUREK M., SZPIKOWSKA G., KRUSZYK R. 2016 - Transformacja składu chemicznego wód podziemnych w niszach źródliskowych na obszarach młodoglacjalnych (Dorzecze Parsęty), Monografie Komitetu Gospodarki Wodnej PAN, 20: 355-369.
- 21. MUGNAI R., MESSANA G., DI LORENZO T. 2015 - The hyporheic zone and its functions: revision and research status in Neotropical regions. Braz. J. Biol., 75: 524-534.
- 22. PACKMAN A.I, SELEHIN M. 2003 - Relative roles of stream flow and sedimentary conditions in controlling hyporheic exchange, Hydrobiologia, 494: 291-297.
- 23. SMITH J.W.N. 2005 - Groundwater - surface water interactions in the hyporheic zone. Environment Agency, Rio House, Waterside Drive, Aztec West, Almondsbury, Bristol., s. 65.
- 24. STANDFORD, J.A. 1998 - Rivers in the landscape: Introduction to the special issue on riparian and ground water ecology. Freshw. Biol., 40: 402-406.
- 25. SZOSZKIEWICZ K., BUDKA A., KAYZER D., PIETRUCZUK K. 2014 - Diversity of macrophyte communities and their relationship to water quality in different types of lowland rivers in Poland. Hydrobiologia, 737: 77-85.
- 26. WHITE D.S. 1993 - Perspectives on defining and delineating hyporheic zones. Journal North America Benthol. Soc., 12: 6-69.
- 27. WÓRMAN A., PACKMAN A., JOHANSSON H., JONSSON K. 2002 - Effect of flow-induced exchange in hyporheic zones on longitudinal transport of solutes in streams and rivers. Water Resources Research, 38: 2-17.
Uwagi
Opracowanie rekordu w ramach umowy 509/P-DUN/2018 ze środków MNiSW przeznaczonych na działalność upowszechniającą naukę (2018).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0c1c316-fa16-4eb5-b73a-8f4a84b2d7d5