PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Physical oceanographic conditions and a sensitivity study on meltwater runoff in a West Greenland fjord : Kangerlussuaq

Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In this paper, we discuss the first setup of a hydrodynamic model for the fjord-type estuary Kangerlussuaq, located in West Greenland. Having such a high-fidelity numerical model is important because it allows us to fill in the temporal and spatial gaps left by in situ data and it allows us to examine the response of the fjord to changes in ice sheet runoff. The numerical model is calibrated against in situ data, and a one-year simulation was performed to study the seasonal variability in the physical oceanographic environment and the fjord's response to changing meltwater runoff. The fjord consists of two distinct parts: a deep inner part that is 80 km long with weak currents and a shallow part that covers the outer 100 km of the fjord connected to the ocean. The outer part has very fast currents (∼1.3 m/s), which we suggest prevents winter sea ice formation. The dominant currents in the fjord are oriented parallel to the long axis of the fjord and are driven by tides and (during summer) freshwater inflow from meltwater-fed rivers. Furthermore, mixing processes are characterized by strong tidal mixing and bathymetric restrictions, and the deep-lying water mass is subject to renewal primarily in wintertime and is almost dynamically decoupled from the open ocean during summertime. Finally, a sensitivity study on the changing meltwater runoff was performed, showing that increasing freshwater runoff considerably strengthens stratification in the upper 100 m of the water column in the inner part of the fjord.
Czasopismo
Rocznik
Strony
460--477
Opis fizyczny
Bibliogr. 61 poz., rys., tab., wykr.
Twórcy
  • DTU Space, Technical University of Denmark, Lyngby, Denmark
  • Norwegian University of Science and Technology, Trondheim, Norway
  • DTU Space, Technical University of Denmark, Lyngby, Denmark
  • Marine Science & Consulting ApS, Copenhagen, Denmark
Bibliografia
  • [1] Arendt, K. E., Nielsen, T. G., Rysgaard, S., Tönnesson, K., 2010. Differences in plankton community structure along the Godthåbsfjord, from the Greenland Ice Sheet to offshore waters. Mar. Ecol. Prog. Ser. 401, 49-62, https://doi.org/10.3354/meps08368.
  • [2] Bendtsen, J., Mortensen, J., Rysgaard, S., 2014. Seasonal surface layer dynamics and sensitivity to runoff in a high Arctic fjord (Young Sound/Tyrolerfjord, 74N). J. Geophys. Res. Ocean. 119, 2439-2461, https://doi.org/10.1002/2013JC009622.
  • [3] Born, E. W., Böcher, J., 2001. The Ecology of Greenland. Atuagkat, Nuuk, 429 pp.
  • [4] Box, J. E., Bromwich, D. H., Veenhuis, B. A., Bai, L. S., Stroeve, J. C., Rogers, J. C., Steffen, K., Haran, T., Wang, S. H., 2006. Greenland ice sheet surface mass balance variability (1988-2004) from calibrated polar MM5 output. J. Clim. 19, 2783-2800, https://doi.org/10.1175/JCLI3738.1.
  • [5] Cappelen, J., 2016. DMI Report 16-08 Weather observations from Greenland — Observation data with description. 1-31.
  • [6] Carroll, D., Sutherland, D. A., Curry, B., Nash, J. D., Shroyer, E. L., Catania, G. A., Stearns, L. A., Grist, J. P., Lee, C. M., de Steur, L., 2018. Subannual and Seasonal Variability of Atlantic-Origin Waters in Two Adjacent West Greenland Fjords. J. Geophys. Res. Ocean. 123, 6670-6687, https://doi.org/10.1029/2018JC014278.
  • [7] Catania, G. A., Stearns, L. A., Moon, T. A., Enderlin, E. M., Jackson, R. H., 2020. Future Evolution of Greenland’s Marine-Terminating Outlet Glaciers. J. Geophys. Res. Earth Surf. 125, 1-28, https://doi.org/10.1029/2018JF004873.
  • [8] Cheng, Y., Andersen, O. B., 2010. Improvement in global ocean tide model in shallow water regions. Altimetry for Oceans & Hydrology. OST-ST Meeting, Lisbon.
  • [9] CMEMS, 2018. Global Ocean Physical Reanalysis product. Product Identifier: GLOBAL_REANALYSIS_PHY_001_030. E.U. Copernicus Marine Service Information.
  • [10] Cottier, F. R., Nilsen, F., Skogseth, R., Tverberg, V., Skarthhamar, J., Svendsen, H., 2010. Arctic fjords: a review of the oceanographic environment and dominant physical processes. Geol. Soc. London, Spec. Publ. 344, 35-50, https://doi.org/10.1144/SP344.4.
  • [11] Courtier, A., 1939. Classification of tides in four types. Int. Hydrogr. Rev.
  • [12] Cowton, T., Slater, D., Sole, A., Goldberg, D., Nienow, P., 2016. Modeling the impact of glacial runoff on fjord circulation and submarine melt rate using a new subgrid-scale parameterization for glacial plumes. J. Geophys. Res.-Ocean. 120, 796-812, https://doi.org/10.1002/2014JC010324.
  • [13] DHI, 2017. MIKE 3 Flow Model — Scientific Documentation. DHI, Hørsholm, Denmark.
  • [14] DHI, 2016a. MIKE zero — Mesh Generator — Step-by-step training guide. DHI, Hørsholm, Denmark.
  • [15] DHI, 2016b. MIKE 21 & MIKE 3 Flow Model FM — Hydrodynamic and Transport Module — Scientific Documentation. DHI, Hørsholm, Denmark.
  • [16] DHI, 2016c. MIKE 3 FLow Model FM — Transport Module — User guide. DHI, Hørsholm, Denmark.
  • [17] Dziallas, C., Grossart, H. P., Tang, K. W., Nielsen, T. G., 2013. Distinct communities of free-living and copepod-associated microorganisms along a salinity gradient in Godthåbsfjord, West Greenland. Arctic, Antarct. Alp. Res. 45, 471-480, https://doi.org/10.1657/1938-4246.45.4.471.
  • [18] Edwards, A., Edelsten, D. J., 1977. Deep water renewal of Loch Etive: A three basin Scottish fjord. Estuar. Coast. Mar. Sci. 5, 575-595, https://doi.org/10.1016/0302-3524(77)90085-8.
  • [19] Flather, R. A., 1976. A tidal model of the north-west European continental shelf. Mem. Soc. R. Sci. Liege 10, 141-164.
  • [20] Gladish, C. V., Holland, D. M., Rosing-Asvid, A., Behrens, J. W., Boje, J., 2015. Oceanic Boundary Conditions for Jakobshavn Glacier. Part I: Variability and Renewal of Ilulissat Icefjord Waters, 2001-14. J. Phys. Oceanogr. 45, 3-32, https://doi.org/10.1175/JPO-D-14-0044.1.
  • [21] Grindsted, A., 2020. Tidal fitting toolbox Aslak Grinsted (2020). Tidal fitting toolbox. MATLAB Central File Exchange, https://www.mathworks.com/matlabcentral/fileexchange/19099-tidal-fitting-toolbox (accessed on May 12, 2020).
  • [22] Harden, B. E., Renfrew, I. A., 2012. On the spatial distribution of high winds off southeast Greenland. Geophys. Res. Lett. 39, 1-6, https://doi.org/10.1029/2012GL052245.
  • [23] Hasholt, B., Bech Mikkelsen, A., Holtegaard Nielsen, M., Andreas Dahl Larsen, M., 2013. Observations of Runoff and Sediment and Dissolved Loads from the Greenland Ice Sheet at Kangerlussuaq, West Greenland, 2007 to 2010. Zeitschrift für Geomorphol. 57 (Suppl. Iss. 2), 3-27, https://doi.org/10.1127/0372-8854/2012/S-00121.
  • [24] Hawes, I., Lund-Hansen, L. C., Sorrell, B. K., Nielsen, M. H., Borzák, R., Buss, I., 2012. Photobiology of sea ice algae during initial spring growth in Kangerlussuaq, West Greenland: Insights from imaging variable chlorophyll fluorescence of ice cores. Photosynth. Res. 112, 103-115, https://doi.org/10.1007/s11120-012-9736-7.
  • [25] Holland, D. M., Thomas, R. H., De Young, B., Ribergaard, M. H., Lyberth, B., 2008. Acceleration of Jakobshavn Isbr triggered by warm subsurface ocean waters. Nat. Geosci. 1, 659-664, https://doi.org/10.1038/ngeo316.
  • [26] Hopwood, M. J., Carroll, D., Dunse, T., Hodson, A., Holding, J. M., Iriarte, J. L., Ribeiro, S., Achterberg, E. P., Cantoni, C., Carlson, D. F., Chierici, M., Clarke, J. S., Cozzi, S., Fransson, A., Juul-Pedersen, T., Winding, M. H. S., Meire, L., 2020. Review article: How does glacier discharge affect marine biogeochemistry and primary production in the Arctic? Cryosphere 14, 1347-1383, https://doi.org/10.5194/tc-14-1347-2020.
  • [27] Hudson, B., Overeem, I., McGrath, D., Syvitski, J. P. M., Mikkelsen, A., Hasholt, B., 2014. MODIS observed increase in duration and spatial extent of sediment plumes in Greenland fjords. Cryosphere 8, 1161-1176, https://doi.org/10.5194/tc-8-1161-2014.
  • [28] Inall, M. E., Murray, T., Cottier, F. R., Scharrer, K., Boyd, T. J., Heywood, K. J., Bevan, S. L., 2014. Oceanic heat delivery via Kangerdlugssuaq Fjord to the south-east Greenland ice sheet. J. Geophys. Res.-Oceans, 119, 631-645, https://doi.org/10.1002/2013JC009295.
  • [29] IPCC, 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change. Cambridge Univ. Press, Cambridge, UK, New York, USA, 1535 pp.
  • [30] Jakacki, J., Przyborska, A., Kosecki, S., Sundfjord, A., Albretsen, J., 2017. Modelling of the Svalbard fjord Hornsund. Oceanologia 59 (4), 473-495, https://doi.org/10.1016/j.oceano.2017.04.004.
  • [31] Kjeldsen, K. K., Mortensen, J., Bendtsen, J., Petersen, D., Lennert, K., Rysgaard, S., 2014. Ice-dammed lake drainage cools and raises surface salinities in a tidewater outlet glacier fjord, west Greenland. J. Geophys. Res. 119 (6), 1310-1321, https://doi.org/10.1002/2013JF003034.
  • [32] Lindbäck, K., Pettersson, R., Hubbard, A. L., Doyle, S. H., Van As, D., Mikkelsen, A. B., Fitzpatrick, A. A., 2015. Subglacial water drainage, storage, and piracy beneath the Greenland ice sheet. Geophys. Res. Lett. 42, 7606-7614, https://doi.org/10.1002/2015GL065393.
  • [33] Lund-Hansen, L. C., Andersen, T. J., Nielsen, M. H., Pejrup, M., 2010. Suspended Matter, Chl-a, CDOM, Grain Sizes, and Optical Properties in the Arctic Fjord-Type Estuary, Kangerlussuaq. West Greenland During Summer. Estuar. Coast. 33, 1442-1451, https://doi.org/10.1007/s12237-010-9300-7.
  • [34] Lund-Hansen, L. C., Hawes, I., Holtegaard Nielsen, M., Dahllöf, I., Sorrell, B. K., 2018. Summer meltwater and spring sea ice primary production, light climate and nutrients in an Arctic estuary, Kangerlussuaq, west Greenland. Arctic Antarct. Alp. Res, 50, art. no. e1414468, 11 pp., https://doi.org/10.1080/15230430.2017.1414468.
  • [35] Mernild, S. H., Liston, G. E., Steffen, K., Van Den Broeke, M., Hasholt, B., 2010. Runoff and mass-balance simulations from the Greenland Ice Sheet at Kangerlussuaq (Søndre Strømfjord) in a 30-year perspective, 1979-2008. Cryosphere 4, 231-242, https://doi.org/10.5194/tc-4-231-2010.
  • [36] Mortensen, J., Bendtsen, J., Motyka, R. J., Lennert, K., Truffer, M., Fahnestock, M., Rysgaard, S., 2013. On the seasonal freshwater stratification in the proximity of fast-flowing tidewater outlet glaciers in a sub-Arctic sill fjord. J. Geophys. Res.-Oceans 118, 1382-1395, https://doi.org/10.1002/jgrc.20134.
  • [37] Mortensen, J., Lennert, K., Bendtsen, J., Rysgaard, S., 2011. Heat sources for glacial melt in a sub-Arctic fjord (Godthåbsfjord) in contact with the Greenland Ice Sheet. J. Geophys. Res.-Oceans 116, (C1), art. no. C01013, 13 pp., https://doi.org/10.1029/2010JC006528.
  • [38] Mortensen, J., Rysgaard, S., Arendt, K. E., Juul-Pedersen, T., Søgaard, D. H., Bendtsen, J., Meire, L., 2018. Local Coastal Water Masses Control Heat Levels in a West Greenland Tidewater Outlet Glacier Fjord. J. Geophys. Res.-Oceans 123, 8068-8083, https://doi.org/10.1029/2018JC014549.
  • [39] Murray, C., Markager, S., Stedmon, C. A., Juul-Pedersen, T., Sejr, M. K., Bruhn, A., 2015. The influence of glacial melt water on bio-optical properties in two contrasting Greenlandic fjords. Estuar. Coast. Shelf Sci. 163, 72-83, https://doi.org/10.1016/j.ecss.2015.05.041.
  • [40] Murray, T., Scharrer, K., James, T. D., Dye, S. R., Hanna, E., Booth, A. D., Selmes, N., Luckman, A., Hughes, A. L. C., Cook, S., Huybrechts, P., 2010. Ocean regulation hypothesis for glacier dynamics in southeast Greenland and implications for ice sweet mass changes. J. Geophys. Res. 115, 1-15, https://doi.org/10.1029/2009JF001522.
  • [41] Myers, P. G., Donnelly, C., Ribergaard, M. H., 2009. Structure and variability of the West Greenland Current in Summer derived from 6 repeat standard sections. Prog. Oceanogr. 80, 93-112, https://doi.org/10.1016/j.pocean.2008.12.003.
  • [42] Myers, P. G., Kulan, N., Ribergaard, M. H., 2007. Irminger water variability in the West Greenland Current. Geophys. Res. Lett. 34, 2-7, https://doi.org/10.1029/2007GL030419.
  • [43] Nielsen, M. H., Erbs-Hansen, D. R., Knudsen, K. L., 2010. Water masses in Kangerlussuaq, a large fjord in West Greenland: the processes of formation and the associated foraminiferal fauna. Polar Res. 29, 159-175, https://doi.org/10.1111/j.1751-8369.2010.00147.x.
  • [44] Rignot, E., Fenty, I., Menemenlis, D., Xu, Y., 2012. Spreading of warm ocean waters around Greenland as a possible cause for glacier acceleration. Ann. Glaciol. 53, 257-266, https://doi.org/10.3189/2012AoG60A136.
  • [45] Rignot, E., Koppes, M., Velicogna, I., 2010. Rapid submarine melting of the calving faces of West Greenland glaciers. Nat. Geosci. 3, 187-191, https://doi.org/10.1038/ngeo765.
  • [46] Rodi, W., 1984. Turbulence models and their application in hydraulics. Internat. Assoc. Hydraulic Res. Delft.
  • [47] Shepherd, A., Ivins, E., Rignot, E., Smith, B., van den Broeke, M., Velicogna, I., Whitehouse, P., Briggs, K., Joughin, I., Krinner, G., Nowicki, S., Payne, T., Scambos, T., Schlegel, N., A, G., Agosta, C., Ahlstrøm, A., Babonis, G., Barletta, V. R., Bjørk, A. A., Blazquez, A., Bonin, J., Colgan, W., Csatho, B., Cullather, R., Engdahl, M. E., Felikson, D., Fettweis, X., Forsberg, R., Hogg, A. E., Gallee, H., Gardner, A., Gilbert, L., Gourmelen, N., Groh, A., Gunter, B., Hanna, E., Harig, C., Helm, V., Horvath, A., Horwath, M., Khan, S., Kjeldsen, K. K., Konrad, H., Langen, P. L., Lecavalier, B., Loomis, B., Luthcke, S., McMillan, M., Melini, D., Mernild, S., Mohajerani, Y., Moore, P., Mottram, R., Mouginot, J., Moyano, G., Muir, A., Nagler, T., Nield, G., Nilsson, J., Noël, B., Otosaka, I., Pattle, M. E., Peltier, W. R., Pie, N., Rietbroek, R., Rott, H., Sandberg Sørensen, L., Sasgen, I., Save, H., Scheuchl, B., Schrama, E., Schröder, L., Seo, K. W., Simonsen, S. B., Slater, T., Spada, G., Sutterley, T., Talpe, M., Tarasov, L., van de Berg, W. J., van der Wal, W., van Wessem, M., Vishwakarma, B. D., Wiese, D., Wilton, D., Wagner, T., Wouters, B., Wuite, J., 2020. Mass balance of the Greenland Ice Sheet from 1992 to 2018. Nature 579, 233-239, https://doi.org/10.1038/s41586-019-1855-2.
  • [48] Shore Protection Manual, 1984. Shore Protection Manual. US Army Corps of Engineergs, Washington DC.
  • [49] Skogseth, R., Haugan, P. M., Jakobsson, M., 2005. Watermass transformations in Storfjorden. Cont. Shelf Res. 25, 667-695, https://doi.org/10.1016/j.csr.2004.10.005.
  • [50] Smagorinsky, J., 1963. General Circulation Experiments With the Primitive Equations. Mon. Weather Rev. 91, 99-164, https://doi.org/10.1175/1520-0493(1963)091<0099:gcewtp>2.3.co;2.
  • [51] Storms, J. E. A., de Winter, I. L., Overeem, I., Drijkoningen, G. G., Lykke-Andersen, H., 2012. The Holocene sedimentary history of the Kangerlussuaq Fjord-valley fill, West Greenland. Quat. Sci. Rev. 35, 29-50, https://doi.org/10.1016/j.quascirev.2011.12.014.
  • [52] Straneo, F., Cenedese, C., 2015. The Dynamics of Greenland’s Glacial Fjords and Their Role in Climate. Ann. Rev. Mar. Sci. 7, 89-112, https://doi.org/10.1146/annurev-marine-010213-135133.
  • [53] Straneo, F., Curry, R. G., Sutherland, D. A., Hamilton, G. S., Cenedese, C., Våge, K., Stearns, L. A., 2011. Impact of fjord dynamics and glacial runoff on the circulation near Helheim Glacier. Nat. Geosci. 4, 322-327, https://doi.org/10.1038/ngeo1109.
  • [54] Straneo, F., Hamilton, G. S., Sutherland, D. A., Stearns, L. A., Davidson, F., Hammill, M. O., Stenson, G. B., Rosing-Asvid, A., 2010. Rapid circulation of warm subtropical waters in a major glacial fjord in East Greenland. Nat. Geosci. 3, 182-186, https://doi.org/10.1038/ngeo764.
  • [55] Straneo, F., Heimbach, P., Sergienko, O., Hamilton, G., Catania, G., Griffies, S., Hallberg, R., Jenkins, A., Joughin, I., Motyka, R., Pfeffer, W. T., Price, S. F., Rignot, E., Scambos, T., Truffer, M., Vieli, A., 2013. Challenges to Understand the Dynamic Response of Greenland’s Marine Terminating Glaciers to Oceanic and Atmospheric Forcing. Bull. Am. Meteorol. Soc. 94 (8), 1131-1144, https://doi.org/10.1175/BAMS-D-12-00100.1.
  • [56] Sutherland, D. A., Pickart, R. S., 2008. The East Greenland Coastal Current: Structure, variability, and forcing. Prog. Oceanogr. 78, 58-77, https://doi.org/10.1016/j.pocean.2007.09.006.
  • [57] Sutherland, D. A., Straneo, F., Pickart, R. S., 2014. Characteristics and dynamics of two major Greenland glacial fjords. J. Geophys. Res.-Oceans 119, 3767-3791, https://doi.org/10.1002/2013JC009786.
  • [58] Trusel, L. D., Das, S. B., Osman, M. B., Evans, M. J., Smith, B. E., Fettweis, X., McConnell, J. R., Noël, B. P. Y., van den Broeke, M. R., 2018. Nonlinear rise in Greenland runoff in response to postindustrial Arctic warming. Nature 564, 104-108, https://doi.org/10.1038/s41586-018-0752-4.
  • [59] UNESCO, 1987. International oceanographic tables. Unesco Tech. Pap. Mar. Sci. 3, 195 pp.
  • [60] van As, D., Hasholt, B., Ahlstrøm, A. P., Box, J. E., Cappelen, J., Colgan, W., Fausto, R. S., Mernild, S. H., Mikkelsen, A. B., Noël, B. P. Y., Petersen, D., van den Broeke, M. R., 2018. Reconstructing Greenland Ice Sheet meltwater discharge through the Watson River (1949-2017). Arctic, Antarct. Alp. Res. 50 (1), art. no. e1433799, 10 pp., https://doi.org/10.1080/15230430.2018.1433799.
  • [61] van As, D., Hubbard, A. L., Hasholt, B., Mikkelsen, A. B., van Den Broeke, M. R., Fausto, R. S., 2012. Large surface meltwater discharge from the Kangerlussuaq sector of the Greenland ice sheet during the record-warm year 2010 explained by detailed energy balance observations. Cryosphere 6, 199-209, https://doi.org/10.5194/tc-6-199-2012.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0be1b6f-0e3f-42bc-8689-5543c55d13f6
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.