PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Comparison of performance limits of the HOT HgCdTe photodiodes with colloidal quantum dot infrared detectors

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In the past decade, there has been significant progress in development of the colloidal quantum dot (CQD) photodetectors. The QCD’s potential advantages include: cheap and easy fabrications, size-tuneable across wide infrared spectral region, and direct coating on silicon electronics for imaging, which potentially reduces array cost and offers new modifications like flexible infrared detectors. The performance of CQD high operating temperature (HOT) photodetectors is lower in comparison with detectors traditionally available on the global market (InGaAs, HgCdTe and type-II superlattices). In several papers their performance is compared with the semiempirical rule, “Rule 07” (specified in 2007) for P-on-n HgCdTe photodiodes. However, at present stage of technology, the fully-depleted background limited HgCdTe photodiodes can achieve the level of room-temperature dark current considerably lower than predicted by Rule 07. In this paper, the performance of HOT CQD photodetectors is compared with that predicted for depleted P-i-N HgCdTe photodiodes. Theoretical estimations are collated with experimental data for both HgCdTe photodiodes and CQD detectors. The presented estimates provide further encouragement for achieving low-cost and high performance MWIR and LWIR HgCdTe focal plane arrays operating in HOT conditions.
Rocznik
Strony
845--855
Opis fizyczny
Bibliogr. 48 poz., rys., tab.
Twórcy
autor
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • Institute of Applied Physics, Military University of Technology, ul. Kaliskiego 2, 00-908 Warsaw, Poland
autor
  • State Key Laboratory of Infrared Physics, Shanghai Institute of Technical Physics, Chinese Academy of Sciences, 500 Yu Tian Road, Shanghai 200083, China
Bibliografia
  • [1] O. Iwert and B. Delabrea, “The challenge of highly curved monolithic imaging detectors”, Proc. SPIE 7742, 774227‒1‒9 (2010).
  • [2] K.-H. Jeong, J. Kim, and L.P. Lee, “Biologically inspired artificial compound eyes”, Science 312, 557‒561 (2006).
  • [3] Y.M. Song, Y. Xie, V. Malyarchuk, J. Xiao, I. Jung, K.-J. Choi, Z. Liu, H. Park, C. Lu, R.H. Kim, R.Li, K.B. Crozier, Y. Huang, and J.A Rogers, “Digital cameras with designs inspired by the arthropod eye,” Nature 497(7447), 95–99 (2013).
  • [4] X. Tang, M.M. Ackerman, and P. Guyot-Sionnest, ”Colloidal quantum dots based infrared electronic eyes for multispectral imaging”, Proc. SPIE 11088, 1108803‒1‒7 (2019).
  • [5] P. Martyniuk, S. Krishna, and A. Rogalski, “Assessment of quantum dot infrared photodetectors for high temperature operation”, J. Appl. Phys. 104(3), 034314‒1‒6 (2008).
  • [6] D. Lee, M. Carmody, E. Piquette, P. Dreiske, A. Chen, A. Yulius, D. Edwall, S. Bhargava, M. Zandian, and W.E. Tennant, “High-operating temperature HgCdTe: A vision for the near future”, J. Electron. Mater. 45(9), 4587‒4595 (2016).
  • [7] A.D. Stiff-Roberts, “Quantum-dot infrared photodetectors: a review”, J. Nanophoton., 3, 031607 (2009).
  • [8] G. Konstantatos and E.H. Sargent, “Solution-processed quantum dot photodetectors”, Proc. IEEE 97(10), 1666‒1683 (2009).
  • [9] N.C. Greenham, X. Peng, and A.P. Alivisatos, “Charge separation and transport in conjugated polymer/cadmium selenide nanocrystal composites studied by photoluminesence quenching and photoconductivity”, Syn. Met. 84, 545‐546 (1997).
  • [10] D.S. Ginger and N.C. Greenham, “Photoinduced electron transfer from conjugated polymers to CdSe nanocrystals”, Phys. Rev. B 59, 10622‒10629 (1999).
  • [11] F.P. Garcia de Arquer, A. Armin, P. Meredith, and E.H. Sargent, “Solution-processed semiconductors for next-generation photo-detectors”, Nat. Rev. Mater. 2, 16100 (2017).
  • [12] P. Guyot-Sionnest, M.M. Ackerman, and X. Tang, “Colloidal quantum dots for infrared detection beyond silicon”, J. Chem. Phys. 151, 060901‒1‒8 (2019).
  • [13] P. Guyot-Sionnest and J.A. Roberts, “Background limited mid-infrared photodetection with photovoltaic HgTe colloidal quantum dots”, Appl. Phys. Lett. 107, 091115 (2015).
  • [14] C. Buurma, R.E. Pimpinellaa, A.J. Ciani, J.S. Feldman, C.H. Grein, and P. Guyot-Sionnest, “MWIR imaging with low cost colloidal quantum dot films”, Proc. SPIE 9933, 993303 (2016).
  • [15] C. Buurma, A.J. Ciani, R.E. Pimpinella, J.S. Feldman, C.H. Grein, and P. Guyot-Sionnes, “Advances in HgTe colloidal quantum dots for infrared detectors”, J. Electron. Mater. 46(11) 6685‒6688 (2017).
  • [16] E.J.D. Klem, C. Gregory, D. Temple, and J. Lewis, “PbS colloidal quantum dot photodiodes for low-cost SWIR sensing”, Proc. SPIE 9451, 945104‒1‒5 (2015).
  • [17] A. De Iacovo, C. Venettacci, L. Colace, L. Scopa, and S. Foglia, “PbS Colloidal Quantum Dot Photodetectors operating in the near infrared”, Sci. Rep. 6, 37913 (2016).
  • [18] M. Thambidurai, Y. Jjang, A. Shapiro, G. Yuan, H. Xiaonan, Y. Xuechao, G. J. Wang, E. Lifshitz, H. V. Demir, and C. Dang, “High performance infrared photodetectors up to 2.8 μm wave-length based on lead selenide colloidal quantum dots”, Opt. Mater. Express 7(7), 2336 (2017).
  • [19] P.E. Malinowski, E. Georgitzikis, J. Maes, I. Vamvaka, F. Frazzica, J. Van Olmen, P. De Moor, P. Heremans, Z. Hens, and D. Cheyns, ”Thin-film quantum dot photodiode for monolithic infrared image sensors”, Sensors 17, 2867 (2017).
  • [20] S.B. Hafiz, M. Scimeca, A. Sahu, and D.‐K. Ko, ”Colloidal quantum dots for thermal infrared sensing and imaging”, Nano Convergence 6, 7 (2019).
  • [21] SWIR Vision Systems, Acuros TM, CQDTM, SWIR Cameras: https://ibv.vdma.org/documents/256550/27019077/2018‒11‒07_Stage1_1030_SWIR+Vision+Systems.pdf/
  • [22] Imec develops infrared thin-film sensor with 'record' pixel density, 23 Oct 2019, https://optics.org/news/10/10/38
  • [23] C.T. Elliott, N.T. Gordon, and A.M. White, “Towards background-limited, room-temperature, infrared photon detectors in the 3–13 mm wavelength range”, Appl. Phys. Lett. 74(9), 2881‐2883 (1999).
  • [24] J. Robinson, M. Kinch, M. Marquis, D. Littlejohn, and K. Jeppson, “Case for small pixels: system perspective and FPA challenge”, Proc. SPIE 9100, 91000I-1‐10 (2014).
  • [25] A. Rogalski, P. Martyniuk and M. Kopytko, “Challenges of small-pixel infrared detectors: a review”, Rep. Prog. Phys. 79, 046501‒1‐42 (2016).
  • [26] G.C. Holst and T.C. Lomheim, CMOS/CCD Sensors and Camera Systems, JCD Publishing and SPIE Press, Winter Park, (2007).
  • [27] M.A. Kinch, State-of-the-Art Infrared Detector Technology, SPIE Press, Bellingham, 2014.
  • [28] G.C. Holst and R.G. Driggers, “Small detectors in infrared system design”, Opt. Eng. 51(9), 096401-1-10 (2012).
  • [29] M.S. Kinch, F. Aqariden, D. Chandra, P.-K. Liao, H.F. Schaake, and H.D. Shih, “Minority carrier lifetime in p-HgCdTe”, J. Electron. Mater. 34, 880–884 (2005).
  • [30] O. Gravrand, J. Rothman, B. Delacourt, F. Boulard, C. Lobre, P.H. Ballet, J.L. Santailler, C. Cervera, D. Brellier, N. Pere-Laperne, V. Destefanis, and A. Kerlain, “Shockley-Read-Hall lifetime study and implication in HgCdTe photodiodes for IR detection”, J. Electron. Mater. 47(10), 5680‒5690 (2018).
  • [31] D. Lee, P. Dreiske, J. Ellsworth, R. Cottier, A. Chen, S. Tallarico, H. Barr, H. Tcheou, A. Yulius, M. Carmody, E. Piquette, M. Zandian, and S. Dougla, “Performance of MWIR and LWIR fully-depleted HgCdTe FPAs”, Extended Abstracts. The 2019 U.S. Workshop on the Physics and Chemistry of II–VI Materials, pp. 189‒190.
  • [32] A. Rogalski, M. Kopytko, and P. Martyniuk, “Performance prediction of p-i-n HgCdTe long-wavelength infrared HOT photo-diodes”, Appl. Opt. 57(18) D11‒D19 (2018).
  • [33] T. Ashley and C. T. Elliott, “Non-equilibrium mode of operation for infrared detection,” Electron. Lett. 21(10), 451–452 (1985).
  • [34] C.T. Elliott, “Non-equilibrium mode of operation of narrow-gap semiconductor devices”, Semicond. Sci. Technol. 5, S30–7 (1990).
  • [35] HOT MCT Detectors, http://www.teledynejudson.com/
  • [36] VIGO System product catalog, https://vigo.com.pl/wp-content/uploads/2017/06/VIGO-Catalogue.pdf
  • [37] W. Huang, S.M.S. Rassela, L. Li, J.A. Massengale, R.Q. Yang, T.D. Mishima, and M.B. Santos, ”A unified figure of merit for interband and intersubband cascade devices”, Infrared Phys. Technol. 96, 298‒301 (2019)
  • [38] E. Lhuillier and P. Guyot-Sionnest, “Recent progress in mid infrared nanocrystal optoelectronics”, IEEE J. Selected Topics in Quantum Electronics 23(5), 6000208 (2017).
  • [39] M. Chen, H. Lu, N. M. Abdelazim, Y. Zhu, Z. Wang, W. Ren, S.V. Kershaw, A.L. Rogach, and N. Zhao, “Mercury telluride quantum dot based phototransistor enabling high-sensitivity room-temperature photodetection at 2000 nm”, ACS Nano 11, 5614−5622 (2017).
  • [40] C. Livache, B. Martinez, N. Goubet, J. Ramade, and E. Lhuillier, “Road map for nanocrystal based infrared photodetectors”, Front. Chem. 6, 575 (2018).
  • [41] G. Konstantatos, “Current status and technological prospect of photodetectors based on two-dimensional materials”, Nat. Commun. 9, 5266 (2018).
  • [42] A. Rogalski, P. Martyniuk, and M. Kopytko, “Type-II superlattice photodetectors versus HgCdTe photodiodes”, Prog. Quant. Electron. 68, 100228 (2019).
  • [43] M. Amani, E. Regan, J. Bullock, G.H. Ahn, and A. Javey, “Midwave infrared photoconductors based on black phosphorus-arsenic alloys”, ACS Nano 11, 11724‐11731 (2017).
  • [44] G. Konstantatos, M. Badioli, L. Gaudreau, J. Osmond1, M. Bernechea, F.P. Garcia de Arquer, F. Gatti, and F.H.L. Koppens “Hybrid graphene-quantum dot phototransistors with ultrahigh gain”, Nat. Nanotechnol. 7, 363–368 (2012).
  • [45] M. Long, A. Gao, P. Wang, H. Xia, C. Ott, C. Pan, Y. Fu, E. Liu, X. Chen, W. Lu, T. Nilges, J. Xu, X. Wang, W. Hu, and F. Miao, ”Room temperature high-detectivity mid-infrared photodetectors based on black arsenic phosphorus”, Sci. Adv. 3, 700589 (2017).
  • [46] M. Long, Y. Wang, P. Wang, X. Zhou, H. Xia, C. Luo, S. Huang, G. Zhang, H. Yan, Z. Fan, X. Wu, X. Chen, W. Lu, and W. Hu, ”Palladium diselenide long-wavelength infrared photodetector with high sensitivity and stability”, ACS Nano 13, 2511‒2519 (2019).
  • [47] X. Yu, P. Yu, D. Wu, B. Singh, Q. Zeng, H. Lin, W. Zhou, J. Lin, K. Suenaga, Z. Liu, and Q.J. Wang, ”Atomically thin noble metal dichalcogenide: a broadband mid-infrared semiconductor”, Nat. Commun. 9, 1545 (2018).
  • [48] G.L. Hansen and J.L. Schmit, ”Calculation of intrinsic carrier concentration in Hg 1−x Cd xTe”, J. Appl. Phys. 54, 1639‒1640 (1983).
Uwagi
PL
Opracowanie rekordu ze środków MNiSW, umowa Nr 461252 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2020).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0bb23c0-b01a-4433-bf37-76670bc608f7
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.