PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Elodeid species as nursery beds for the successful seed restoration of Vallisneria spiralis L.

Autorzy
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Submerged aquatic vegetation (SAV) is often difficult to restore due to their low seedling survival rates. Therefore, we hypothesized that the elodeid macrophytes serve as effective “nursery” areas to promote success for seedlings of other SAV. However, the high density of the elodeid community may inhibit the establishment of other SAV. An experiment was conducted to explore this “nursery effect” as a restoration approach to increase the success of seed restoration. Two elodeid species were pre-planted into mesocosms to create three levels of “nursery beds” i.e., bare, sparse (approx. 100 g m-2) and dense (approx. 200 g m-2). Seeds of Vallisneria spiralis were then placed into these beds to test the seed germination and growth of V. spiralis seedlings. After three months, seed germination was lower in the bare treatment than in the sparse and dense treatments. The growth of V. spiralis seedlings was greater in the sparse treatment than in the bare and dense treatments. These results revealed that the established elodeid bed had a positive effect on the seed restoration of V. spiralis but that the restoration efficiency was significantly reduced by the high-density cover of the elodeid community.
Rocznik
Strony
53--62
Opis fizyczny
Bibliogr. 65 poz., tab., wykr.
Twórcy
autor
  • College of Landscape Architecture, Nanjing Forestry University, Nanjing 210037, PR China
autor
  • College of Biology and the Environment, Joint Center for Sustainable Forestry Studies, Nanjing Forestry University, Nanjing 210037, PR China
Bibliografia
  • 1. Ailstock M.S., Shafer DJ., Magoun, A.D. 2010 -Effects of planting depth, sediment grain size, and nutrients on Ruppia maritima and Potamogeton perfoliatus seeding emergence and growth - Restor. Ecol. 18: 574-583.
  • 2. Arthaud F., Mousset M., Vallod D., Robin J., Wezel A., Bornette G. 2012 - Effect of light stress from phytoplankton on the relationship between aquatic vegetation and the propagule bank in shallow lakes - Freshwater Biol. 57: 666-675.
  • 3. Best E.P.H., Teeter A.M., Landwehr K.J., James W.E, Nair S.K. 2008 - Restoration options for potential persistence of submersed aquatic vegetation: combining ecological, hydrodynamic and sediment transport modelling - Freshwater Biol. 53: 814-826.
  • 4. Blindow I. 1992 - Decline of charophytes during eutrophication: comparison with angiosperms - Freshwater Biol. 28: 9-14.
  • 5. Cao J., Wang Y., Zhu Z. 2012 - Growth response of the submerged macrophyte Myriophyllum spicatum to sediment nutrient levels and water-level fluctuations - Aquat. Biol. 17: 295-303.
  • 6. Chambers J.C., MacMahon J.A. 1994 - A day in the life of a seed: movements and fates of seeds and their implications for natural and managed systems - Annu. Rev. Ecol. Syst. 25: 263-292.
  • 7. Chase J.M., Knight T.M. 2006 - Effects of eutrophication and snails on Eurasian watermilfoil (Myriophyllum spicatum) invasion - Biol. Invasions, 8: 1643-1649.
  • 8. Dai Y., Jia C., Liang W., Hu S., Wu Z. 2012 - Effects of the submerged macrophyte Ceratophyllum demersum L. on restoration of a eutrophic waterbody and its optimal coverage - Ecol. Eng. 40:113-116.
  • 9. Dai Y., Wu S., Chang J., Jia C., Liang W., Wu Z. 2012 - Effects of Ceratophyllum demersum L. restoration on phosphorus balance at water-sediment interface - Ecol. Eng. 44: 128-132.
  • 10. Danger M., Lacroix G., Oumarou C., Benest D., Meriguet J. 2008 - Effects of food-web structure on periphyton stoichiometry in eutrophic lakes: a mesocosm study - Freshwater Biol. 53: 2089-2100.
  • 11. de Winton M., Clayton J.S., Champion P.D. 2000 - Seedling emergence from seed banks of 15 New Zealand lakes with contrasting vegetation histories - Aquat. Bot. 66: 181-194.
  • 12. Dobberfuhl D.R. 2007 - Light limiting thresholds for submerged aquatic vegetation in a black-water river - Aquat. Bot., 86: 346-352.
  • 13. Erhard D., Gross E.M. 2006 - Allelopathic activity of Elodea canadensis and Elodea nuttallii against epiphytes and phytoplankton - Aquat. Bot. 85:203-211.
  • 14. Eriksson P.G., Weisner S.E.B. 1999 - An experimental study on effects of submersed macrophytes on nitrification and denitrification in ammonium-rich aquatic systems - Limnol. Oceanogr. 44: 1993-1999.
  • 15. Gross E.M., Feldbaum C., Graf A. 2003 - Epiphyte biomass and elemental composition on submersed macrophytes in shallow eutrophic lakes - Hydrobiologia, 506-509: 559-565.
  • 16. Harper J.L. 1977 - Population biology of plants - Academic Press, London.
  • 17. He J., Gu X., Liu G. 2008 - Aquatic macrophytes in East Lake Taihu and its interaction with water environment - J. Lake Sci. 20: 790-795 (in Chinese, English summary).
  • 18. Hengst A., Melton J., Murray L. 2010 - Estuarine restoration of submerged aquatic vegetation: the nursery bed effect - Restor. Ecol. 18: 605-614.
  • 19. Hilt S., Gross E.M. 2008 - Can allelopathically active submerged macrophytes stabilise clear-water states in shallow lakes? - Basic Appl. Ecol. 9: 422-432.
  • 20. Holmer M., Bondgaard E.J. 2001 - Photosynthetic and growth response of eelgrass to low oxygen and high sulfide concentrations during hypoxic events - Aquat. Bot. 70: 29-38.
  • 21. Hong B., Li W. 2000 - Ecological studies on Vallisneria L. in China - Journal of Wuhan Botanical Research, 18: 500-508 (in Chinese, English summary).
  • 22. Hussner A. 2012 - Alien aquatic plant species in European countries - Weed Res. 52: 297-306.
  • 23. Irfanullah H.M., Moss B. 2004 - Factors influencing the return of submerged plants to a clear-water, shallow temperate lake - Aquat. Bot. 80: 177-191.
  • 24. Jiang J., Zhou C., An S., Yang H., Guan B., Cai Y. 2008 - Sediment type, population density and their combined effect greatly charge the short-time growth of two common submerged macrophytes - Ecol. Eng. 34: 79-90.
  • 25. Jin X., Xu Q., Yan C. 2006 - Restoration scheme for macrophytes in a hypertrophic water body, Wuli Lake, China - Lakes Reserv. Res. Manag. 11:21-27.
  • 26. Jones J.I., Sayer C.D. 2003 - Does the fish-invertebrate-periphyton cascade precipitate plant loss in shallow lakes? - Ecology, 84: 2155-2167.
  • 27. Jones J.I., Young J.O., Eaton J.W., Moss B. 2002 - The influence of nutrient loading, dissolved inorganic carbon and higher trophic levels on the interaction between submerged plants and periphyton - J. Ecol. 90: 12-24.
  • 28. Ke X., Li W. 2006 - Germination requirement of Vallisneria natans seeds: implications for restoration in Chinese lakes - Hydrobiologia, 559: 357-362.
  • 29. Kemp M.W., Batleson R., Bergstrom P., Carter V., Gallegos C., Hunley W., Karrh L., Koch E., Landwehr J., Moore K., Murray L., Naylor M., Rybicki N., Court Stevenson J., Wilcox D. 2004 - Habitat requirements for submerged aquatic vegetation in Chesapeake Bay: Water quality, light regime, and physical-chemical factors - Estuar. Coast. 27: 363-377.
  • 30. Kirk J.T.O. 1994 - Light and photosynthesis in aquatic ecosystem - Cambridge University Press, Cambridge.
  • 31. Koch E.W. 2001 - Beyond light: physical, geological, and geochemical parameters as possible submersed aquatic vegetation habitat requirements - Estuaries, 24: 1-17.
  • 32. Koch M.S., Mendelssohn I.A., McKee K.L. 1990 - Mechanism for the hydrogen sulfideinduced growth limitation in wetland macrophytes -Limnol. Oceanogr. 35: 399-408.
  • 33. Li K., Liu Z., Gu B. 2008 - Persistence of clear water in a nutrient-impacted region of Lake Taihu: The role of periphyton grazing by snails - Fund. Appl. Limnol. 173: 15-20.
  • 34. Li K., Liu Z., Gu B. 2009 - Density-dependent effects of snail grazing on the growth of a submerged macrophyte, Vallisneria spiralis - Ecol. Complex. 6: 438-442.
  • 35. Lu J., Wang H., Pan M., Xia J., Xing W., Liu G. 2012 - Using sediment seed banks and historical vegetation change data to develop restoration criteria for a eutrophic lake in China - Ecol. Eng. 39:95-103.
  • 36. Marion S.R., Orth R.J. 2010a - Innovative techniques for large-scale seagrass restoration using Zostera marina (eelgrass) seeds - Restor. Ecol. 18:514-526.
  • 37. Marion S.R., Orth R.J. 2010b - Factors influencing seedling establishment rates in Zostera marina and their implications for seagrass restoration - Restor. Ecol. 18: 549-559.
  • 38. Melton J.H. 2002 - Environmental quality and restoration of mesohaline submerged aquatic vegetation - University of Maryland, College Park
  • 39. Neckles H.A., Wetzel R.L., Orth R.J. 1993 - Relative effects of nutrient enrichment and grazing on epiphyte-macrophyte (Zostera marina L.) dynamics - Oecologia, 93: 285-295.
  • 40. Orth R., Williams M., Marion S., Wilcox D., Carruthers T.B., Moore K., Kemp W.M., Dennison W., Rybicki N., Bergstrom P., Batiuk R. 2010 - Long-Term Trends in Submersed Aquatic Vegetation (SAV) in Chesapeake Bay, USA, Related to Water Quality - Estuar. Coast. 33: 1144-1163.
  • 41. Orth R.J., Harwell M.C., Bailey E.M., Bartholomew A., Jawad J.T., Lombana A.V., Moore K.A., Rhode J.M., Woods H.E. 2000 - A review of issues in seagrass seed dormancy and germination: implications for conservation and restoration - Mar. Ecol. Prog. Ser. 200: 277-288.
  • 42. Orth R.J., Mark L., Moore K.A. 1994 - Seed dispersal in a marine macrophyte: implications for colonization and restoration - Ecology, 75: 1927-1939.
  • 43. Orth R.J., Moore K.A. 1983 - Seed germination and seedling growth of Zostera marina L. (eelgrass) in the Chesapeake bay - Aquat. Bot. 15: 117-131.
  • 44. Qiu D., Wu Z., Liu B., Deng J., Fu G., He F. 2001 - The restoration of aquatic macrophytes for improving water quality in a hypertrophic shallow lake in Hubei Province, China - Ecol. Eng., 18: 147-156.
  • 45. Ruiz G. M., Fofonoff P., Hines A.H., Grosholz E.D. 1999 - Non-indigenous species as stressors in estuarine and marine communities: assessing invasion impacts and interactions - Limnol. Oceanogr. 44: 950-972.
  • 46. Salgado J., Sayer C., Carvalho L., Davidson T., Gunn I. 2010 - Assessing aquatic macrophyte community change through the integration of palaeolimnological and historical data at Loch Leven, Scotland - J. Paleolimnol. 43: 191-204.
  • 47. Sand-Jensen K., Pedersen N.L., Thorsgaard I., Moeslund B., Borum J., Brodersen K.P. 2008 - 100 years of vegetation decline and recovery in Lake Pure, Denmark - J. Ecol. 96: 260-271.
  • 48. Santamaría L. 2002 - Why are most aquatic plants widely distributed? Dispersal, clonal growth and small-scale heterogeneity in a stressful environment - Acta Oecol. 23: 137-154.
  • 49. Scheffer M., Hosper S.H., Meijer M.L., Moss B., Jeppesen E. 1993 - Alternative equilibria in shallow lakes - Trends Ecol. Evol. 8: 275-279.
  • 50. Scheffer M., van Nes E. H. 2007 - Shallow lakes theory revisited: various alternative regimes driven by climate, nutrients, depth and lake size - Hydrobiologia, 584: 455-466.
  • 51. Schutten J., Dainty J., Davy A.J. 2005 - Root anchorage and its significance for submerged plants in shallow lakes - J. Ecol. 93: 556-571.
  • 52. Smith C.S., Barko J.W. 1990 - Ecology of Eurasian watermilfoil - J. Aquat. Plant Manage. 28: 55-64.
  • 53. Smith V.H. 2003 - Eutrophication of freshwater and coastal marine ecosystems a global problem - Environ. Sci. Pollut. Res. 10: 126-139.
  • 54. Smoot J.C., Langworthy D.E., Levy M., Findlay R.H. 1998 - Periphyton growth on submerged artificial substrate as a predictor of phytoplankton response to nutrient enrichment - J. Microbiol. Meth. 32: 11-19.
  • 55. Titus J.E., Hoover D.T. 1991 - Toward predicting reproductive success in submersed freshwater angiosperms - Aquat. Bot. 41: 111-136.
  • 56. van den Broek, T., van Diggelen R., Bobbink R. 2005 - Variation in seed buoyancy of species in wetland ecosystems with different flooding dynamics - J. Veg. Sci. 16: 579-586.
  • 57. Veen G.F., Sarneel J.M., Ravensbergen L., Huig N., van Paassen J., Rip W., Bakker E.S. 2013 - Aquatic grazers reduce the establishment and growth of riparian plants along an environmental gradient - Freshwater Biol. 58: 1794-1803.
  • 58. Wang J.W., Yu D., Xiong W., Han Y.Q. 2008 - Above-and belowground competition between two submersed macrophytes - Hydrobiologia, 607: 113-122.
  • 59. Wu J., Cheng S., Liang W., He F., Wu Z. 2009 - Effects of sediment anoxia and light on turion germination and early growth of Potamogeton crispus - Hydrobiologia, 628: 111-119.
  • 60. Xiao K., Yu D., Wang J. 2006 - Habitat selection in spatially heterogeneous environments: a test of foraging behaviour in the clonal submerged macrophyte Vallisneria spiralis - Freshwater Biol. 51: 1552-1559.
  • 61. Xiao K., Yu D., Wang L., Han Y. 2011 - Physiological integration helps a clonal macrophyte spread into competitive environments and coexist with other species - Aquat. Bot. 95: 249-253.
  • 62. Xie Y., Ren B., Li F. 2009 - Increased nutrient supply facilitates acclimation to high-water level in the marsh plant Deyeuxia angustifolia: The response of root morphology - Aquat. Bot. 91: 1-5.
  • 63. Ye C., Li C.-H., Yu H., Song X., Zou G., Liu J. 2011 - Study on ecological restoration in near-shore zone of a eutrophic lake, Wuli Bay, Taihu Lake Ecol Eng. 37: 1434-1437.
  • 64. Ye C., Xu Q., Kong H., Shen Z., Yan C. 2007 - Eutrophication conditions and ecological status in typical bays of Lake Taihu in China - Environ. Monit. Assess, 135: 217-225.
  • 65. Ye C., Yu H., Kong H., Song X., Zou G., Xu Q., Liu J. 2009 - Community collocation of four submerged macrophytes on two kinds of sediments in Lake Taihu, China - Ecol. Eng. 35: 1656-1663.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0bb060f-0d13-45eb-a7fd-0fd86885770b
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.