PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

A new approach to sustainable environmental assessment for wastewater treatment plants: A case study in the central region of Iraq

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
Drinking water treatment aims to eliminate physical, chemical, and biological impurities to mitigate health risks, ensure adequate water quality, and promote sustainability. However, the treatment process often requires significant energy, chemicals, and technological inputs, which can lead to increased secondary environmental impacts and higher water production costs. This study aims to evaluate the sustainability of three wastewater treatment facilities (WWTPs) based on their water quality index (WQI). The facilities under investigation are Al-Barakiya Treatment Plant, Al-Maymira Treatment Plant, and Al-Rustamiyah Treatment Plant, all located within the research area. Using the Canadian Council of Ministers of the Environment (CCME) framework, the WQI was employed to assess both raw and treated water quality based on fundamental water characterization criteria. The study involved the regular collection and testing of water samples from January 2023 to December 2023. The raw wastewater quality indices for the three plants were as follows: Al-Rustamiya Treatment Plant (81.232), Al-Maymira Treatment Plant (79.307), and Al-Barakiya Treatment Plant (80.931). The treated water from these facilities received a “good” quality rating, with WQI values ranging from 94.620 to 94.718. This study demonstrates that while the CCME approach is effective in evaluating the quality of treated wastewater, the variations in WQI results reflect the balance between achieving high water quality and addressing the sustainability challenges inherent in the treatment process.
Twórcy
  • Lecturer, Civil Engineering Department, University of Diyala, 32001 Diyala, Iraq
  • Department of Civil Engineering, University of Babylon, 51001 Babylon, Iraq
Bibliografia
  • 1. Abbasi, T., & Abbasi, S. A. (2012). Water quality indices. Elsevier.
  • 2. AbdulRazzak, A. M. (2013). Performance evaluation of Al-Rustamiya wastewater treatment plant. Journal of Engineering, 19(4), 429–438.
  • 3. Afan, H. A., Wan Mohtar, W. H. M., Khaleel, F., Kamil, A. H., Mansoor, S. S., Alsultani, R., Ahmed, A. N., Sherif, M. and El-Shafie, A. (2024). Data-driven water quality prediction for wastewater treatment plants. Heliyon, 10, 18, e36940.
  • 4. Alfatiawi, T., Mansori, N., & Alsultani, A. (2020). Stability assessment of diaphram cellular cofferdams subjected to severe hydro-structural conditions, Open Civil Eng. J, 14(1), 44–55.
  • 5. Alfatlawi T. J, Alsultani R. A. (2022). Characterization of chloride penetration in hydraulic concrete structures exposed to different heads of seawater: Using hydraulic pressure tank. Engineering Science and Technology, an International Journal. 22(3), 939–46. http://dx.doi.org/10.1016/j. jestch.2019.02.001
  • 6. Alfatlawi, T. J. M., & Alsultani, R. A. A. (2018). Determination of the degree of saturation and chloride penetration in cracked hydraulic concrete structures: using developed electrical conductivity technique. Indian Journal of Science and Technology, 11, 37.
  • 7. Alfatlawi, T. J., & Alsultani, R. A. (2018). Numerical modeling for long term behavior of chloride penetration in hydraulic concrete structures. Global Scientific Journal of Civil Engineering, 1.
  • 8. Al-Jewahery, H. F. A. H. (2023). Evaluation the performance of Al-Maameera wastewater treatment plant. Texas Journal of Agriculture and Biological Sciences, 14, 70–78.
  • 9. Al-Kareem, S. A., & ALKizwini, R. S. (2022). Statistical analysis for water quality index for Shatt-Al- Hilla river in Babel city. Water Practice & Technology, 17(2), 567–586.
  • 10. Alobaidy, A. H. M. J., Maulood, B. K. & Kadhem, A. J. (2010). Evaluating raw and treated water quality of Tigris River within Baghdad by index analysis. Journal of Water Resource and Protection 2(7), 629.
  • 11. Alsultani R., Khassaf S.I. Nonlinear dynamic response analysis of coastal pile foundation bridge pier subjected to current, wave and earthquake actions: as a model of civilian live. Resmilitaris. 2022 Nov 12; 12(2), 6133–48.
  • 12. Alsultani, R., Karim, I. R., & Khassaf, S. I. (2022). Dynamic response of deepwater pile foundation bridge piers under current-wave and earthquake excitation. Engineering and Technology Journal, 40(11), 1589–1604. http://dx.doi.org/10.30684/ etj.2022.135776.1285
  • 13. Alsultani, R., Karim, I. R., & Khassaf, S. I. (2022). Mathematical formulation using experimental study of hydrodynamic forces acting on substructures of coastal pile foundation bridges during earthquakes: As a model of human bridge protective. Resmilitaris, 12(2), 6802–6821.
  • 14. Al-wardy, A. H. (2021). Evaluation and modeling of the performance of wastewater treatment plant in Al-Muamirah in the province of Babylon for the removal pollutant of Municipal Wastewater (Doctoral dissertation, University of Kerbala).
  • 15. Brown, R. M., McClelland, N. I., Deininger, R. A., & Tozer, R. G. (1970). A water quality index-do we dare. Water and sewage works, 117(10).
  • 16. de Simone Souza H. H., de Morais Lima P., Medeiros D. L., Vieira J., Magalhães Filho F. J., Paulo P. L., Fullana-i-Palmer P., Boncz M. Á. (2023). Environmental assessment of on-site source-separated wastewater treatment and reuse systems for resource recovery in a sustainable sanitation view. Science of the Total Environment. 895, 165122.
  • 17. Fadhl, Y. (2022). Energy consumption and cost implications of advanced water treatment technologies. Energy Reports, 8, 2001–2015. http://dx.doi. org/10.1016/j.egyr.2022.01.017
  • 18. García, L., Roldán, G., & Restrepo, I. (2020). The role of water resources in achieving clean water and sanitation. Journal of Environmental Management, 250, 109460. http://dx.doi.org/10.1016/j. jenvman.2019.109460
  • 19. Hasan, R.F., Seyedi, M., Alsultani, R. (2024). Assessment of Haditha Dam surface area and catchment volume and its capacity to mitigate flood risks for sustainable development. Mathematical Modelling of Engineering Problems, 11(7), 1973–1978. https://doi.org/10.18280/mmep.110728
  • 20. Hurley, T., Sadiq, R. & Mazumder, A. (2012). Adaptation and evaluation of the Canadian council of ministers of the environment water quality index (CCME WQI) for use as an effective tool to characterize drinking source water quality. Water Res 46(11), 3544–3552.
  • 21. Hussain, A., Ahmed, R., & Karim, M. (2022). Evaluation of treatment technologies and environmental impacts at the Al-Rustamiya wastewater treatment facility. Journal of Environmental Science and Technology, 16(3), 245–259. http://dx.doi.org/10.1016/j. jenvsci.2022.02.004
  • 22. Iraqi Standards for Water Quality (IQS). (2009). Physical and Chemical Characteristics of Water. Central Organization for Standardization and Quality Control (COSQC), Iraq, Standard 417.
  • 23. Jasim, H., Al-Badrani, S., & Qasim, M. (2023). Advancements and challenges in treatment technologies at the Al-Barakiya facility. Water Research, 215, 118348. http://dx.doi.org/10.1016/j.watres.2023.118348
  • 24. Jin, W., Wang, X., & Chen, Z. (2019). Advancements in membrane filtration technologies for water treatment. Journal of Membrane Science, 584, 81–99. http://dx.doi.org/10.1016/j.memsci.2019.04.020
  • 25. Khan, S., Ahmad, I., & Malik, A. (2018). Industrial wastewater impact on water bodies and treatment methods. Water Research, 144, 595–610. http://dx. doi.org/10.1016/j.watres.2018.07.041
  • 26. Maćerak A. L., Duduković N., Kiss F., Slijepčević N., Pešić V., Bečelić-Tomin M., Kerkez Đ. (2024). Electrocoagulation in treatment of municipal wastewater–life cycle impact assessment. Chemosphere. May 1, 355, 141701.
  • 27. Moss, R., Ruppel, F., & Keller, J. (2021). Environmental impacts of chemical use in water treatment processes. Environmental Science & Technology, 55(6), 3371–3380. http://dx.doi.org/10.1021/acs. est.0c07891
  • 28. Muhammad, A., Kareem, Z., & Abbas, T. (2015). Performance evaluation of the Al-Barakiya wastewater treatment facility: Challenges in operational efficiency. Environmental Engineering and Management Journal, 14(7), 1587–1594. http://dx.doi.org/10.30638/eemj.2015.145
  • 29. Nada, A., Elshemy, M., Zeidan, B. A., & Hassan, A. A. (2016, July). Water quality assessment of Rosetta Branch, Nile River, Egypt. In Third International Environmental Forum, Environmental Pollution: Problem and Solution 12–14. Tanta University.
  • 30. Osei, K., Mensah, F., & Addo, I. (2021). Sustainable Water Management Strategies for Achieving SDGs. Environmental Science & Policy, 115, 1-9. http://dx.doi.org/10.1016/j.envsci.2021.03.004
  • 31. Ponsadailakshmi, R., Sivasankar, S., & Thamaraiselvan, M. (2018). The role of WQI in public awareness and policy formulation. Environmental Science and Pollution Research, 25, 15307–15315. http:// dx.doi.org/10.1007/s11356-018-1691-5
  • 32. Praveen, K., Abinandan, S., Venkateswarlu, K., & Megharaj, M. (2024). Emergy analysis and life cycle assessment for evaluating the sustainability of solar-integrated ecotechnologies in winery wastewater treatment. ACS Sustainable Chemistry & Engineering, 12(11), 4676–4689.
  • 33. Rachedi, L. H. & Amarchi, H. (2015) Assessment of the water quality of the Seybouse River (north-east Algeria) using the CCME WQI model. Water Science and Technology: Water Supply 15(4), 793–801.
  • 34. Ranjbar, J. A., Masoodi, M., Sharifiniya, M. & Riyahi, B. A. (2016). Integrated river quality management by CCME WQI as an effective tool to characterize surface water source pollution (Case study: Karun River, Iran). Pollution 2(3), 313–330.
  • 35. Rodríguez-Castillo M., Balsebre N., Bolivar-Paypay V., Poganietz W. R., Prieto A. L. (2024 Sep 1). Sustainability assessment of a sequential anaerobic-algal membrane bioreactor for wastewater reuse. Sustainable Production and Consumption. 49, 104–14.
  • 36. Salahaldain, Z., Naimi, S., Alsultani, R. (2023).Estimation and analysis of building costs using artificial intelligence support vector machine. Mathematical Modelling of Engineering Problems. 10(2), 405– 411. https://doi.org/10.18280/mmep.100203
  • 37. Zahra, S., Naimi, S. and Alsultani, R. (2023). Estimation and analysis of building costs using artificial intelligence support vector machine. http://dx.doi. org/10.18280/mmep.100203
  • 38. Şener, S., Şener, E., & Davraz, A. (2017). Water quality indexing methods: a comprehensive review. Environmental Monitoring and Assessment, 189(1), 211. http://dx.doi.org/10.1007/s10661-017-5908-1
  • 39. Shubbar, A. A., Sadique, M., Nasr,M. S., Al-Khafaji, Z. S. & Hashim, K. S. (2020a). The impact of grinding time on properties of cement mortar incorporated high volume waste paper sludge ash. Karbala International Journal of Modern Science 6(4), 1–23.
  • 40. Shubbar, A. A., Sadique, M., Shanbara, H. K. & Hashim, K. (2020b). The Development of a New Low Carbon Binder for Construction as an Alternative to Cement. In: Advances in Sustainable Construction Materials and Geotechnical Engineering, 1st eds. Springer, Berlin, 205–213.
  • 41. Thair J. M., Imad A. D., Riyadh A. A. (2018 Dec 1). Experimental determination and numerical validation of the chloride penetration in cracked hydraulic concrete structures exposed to severe marine environment. InIOP Conference Series: Materials Science and Engineering 454(1), 012099. IOP Publishing.
  • 42. Zhang, X., Liu, Y., & Zhang, M. (2022). Climate change and its impact on water resources. Science of The Total Environment, 831, 154961. http://dx.doi.org/10.1016/j.scitotenv.2022.154961
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0b8d9cc-96d4-4eab-b5bd-5d8c4687d2c5
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.