Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
This work reports on the optical, structural, and morphological properties of silver oxide thin films obtained by postoxidation of silver deposited previously by the thermal evaporation technique. The samples were deposited on glass substrates using the oblique angle deposition technique for different angles of incidence γ (γ=0°, 20°, 40°, 60°, 75°, and 85°). γ is defined as the angle between the particle flux and the normal to the substrate. The resulting thin films were annealed in the free air at two temperatures (300°C and 400°C). X-ray diffraction (XRD), scanning electron microscopy (SEM), and UV-visible-NIR spectrophotometer were performed to study the crystal structure, as well as the morphological and optical properties (transmittance and reflectance), of the AgxO samples. X-ray diffraction analysis revealed the presence of the AgxO phase for the silver films deposited at a high angle of incidence and for the annealing temperature 300°C. In contrast, the diffractograms of the silver films annealed at 400°C show an amorphous behavior. Optical results indicated that the direct band gap energy increases pursuant to increasing the angle of incidence γ. The absorption coefficients of AgxO thin films were found to be in the range of 103–105 cm−1. Additionally, we determined the birefringence for the layers annealed at 400°C and found that the highest value of birefringence is obtained corresponding to the angle of incidence 60°. Morphological analysis indicated that the porosity increases with the angle of incidence and highlights the amorphous nature of the films, which is attributed to the columnar structure.
Wydawca
Czasopismo
Rocznik
Tom
Strony
27--41
Opis fizyczny
Bibliogr. 47 poz., rys., tab.
Twórcy
autor
- Université Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Photovoltaïque et Matériaux Semiconducteurs, BP37, 1002 Le Belvédère, Tunis, Tunisia
- Ecole Nationale Supérieure d’Ingenieurs de Tunis, Université de Tunis, 5 Avenue Taha Hussein, 1008 Tunis, Tunisia
autor
- Université Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Photovoltaïque et Matériaux Semiconducteurs, BP37, 1002 Le Belvédère, Tunis, Tunisia
autor
- Sorbonne Université, CNRS, Institut des Nanosciences de Paris – UMR 7588Campus Pierre et Marie Curie, Case 840, 04 place Jussieu 75005 Paris, France
autor
- Université Tunis El Manar, Ecole Nationale d’Ingénieurs de Tunis, Laboratoire de Photovoltaïque et Matériaux Semiconducteurs, BP37, 1002 Le Belvédère, Tunis, Tunisia
- Universite de Tunis, Institut Préparatoire aux Etudes d’Ingénieurs de Tunis-IPEIT, 2, Rue Jawaher Lel Nehru, 1089 Montfleury, Tunisia
Bibliografia
- [1] Dellasega D, Casari CS, Vario F, Conti C, Bottani CE, Bassi AL. Nanostructured Ag4O4 thin films produced by ion beam oxidation of silver. Appl Surf Sci. 2013;266: 161–169. doi:10.1016/j.apsusc.2012.11.121.
- [2] Fuji H, Tominaga J, Men L, Nakano T, Katayama H, Atoda N. A near-field recording and readout technology using a metallic probe in an optical disk. Jpn J Appl Phys. 2000;39: 980–981.
- [3] Tselepis E, Fortin E. Preparation and photovoltaic properties of anodically grown Ag2O films. J Mater Sci. 1986;21: 985–988. doi:10.1007/BF01117383.
- [4] Kiazadeh A, Gomes HL, Rosa da Costa AM, Moreira JA, de Leeuw DM, Meskers SCJ. Intrinsic and extrinsic resistive switching in a planar diode based on silver oxide nanoparticles. Thin Solid Films. 2012;522: 407–411. doi:10.1016/j.tsf.2012.08.041.
- [5] Tominaga J. The application of silver oxide thin films to plasmon photonic devices. J Phys: Condens Matter. 2003;15: R1101–1122.
- [6] Raju NRC, Kumar KJ. Photodissociation effects on pulsed laser deposited silver oxide thin films: surface-enhanced resonance Raman scattering. J Raman Spectrosc. 2011;42: 1505–1509. doi:10.1002/jrs.2895.
- [7] Nwanya AC, Ugwuoke PE, Ezekoye BA, Osuji RU, Ezema FI. Structural and optical properties of chemical bath deposited silver oxide thin films: role of deposition time. J Spectrosc (Hindawi). 2013: Article ID 450820. doi:10.1155/2013/450820.
- [8] Xiaoyong G, Mengke Z, Zengyuan Z, Chao C, Jiaomin M, Jingxiao L. Effects of hydrogen annealing on the microstructure and optical properties of single-phased Ag2O film deposited using direct-current reactive magnetron sputtering. Thin Solid Films. 2011;519: 6620–6623.
- [9] Sullivan KT, Wu C, Piekiel NW, Gaskell K, Zachariah MR. Synthesis and reactivity of nano-Ag2O as an oxidizer for energetic systems yielding antimicrobial products. Combust Flame. 2013;160(2): 438–446.
- [10] Lund E, Galeckas A, Azarov A, Monakhov EV, Svensson BG. Photoluminescence of reactively sputtered Ag2O films. Thin Solid Films. 2013;536: 156–159. doi:10.1016/j.tsf.2013.04.026.
- [11] Muhsien MA, Hamdan HH. Preparation and characterization of p-Ag2O/n-Si heterojunction devices produced by rapid thermal oxidation. Procedia Energy. 2012;18: 300–311. doi:10.1016/j.egypro.2012.05.041.
- [12] Yuan Z, Dryden NH, Vittal JJ, Puddephatt RJ. Chemical vapor deposition of silver. Chem Mater. 1995;7: 1696–1702. doi:10.1021/cm00057a019.
- [13] Her YC, Lan YC, Hsu WC, Tsai SY. The characteristics of reactively sputtered AgOx films prepared at different oxygen flow ratios and its effect on super-resolution near-field properties. Jpn J Appl Phys. 2004;43: 267–272.
- [14] Deng R, Li J, Kang HK, Zhang HJ, Wong CC. Laser directed deposition of silver thin films. Thin Solid Films. 2011;519: 5183–5187. doi:10.1016/j.tsf.2011.01.108.
- [15] Liang JS, Chen SH, Lin EY, Luo DF, Jiang SJ. Morphology evolution of glancing angle deposition Ag films on nanosphere-array substrates: Kinetic Monte Carlo simulation. Comput Mater Sci. 2013;79: 31. doi:10.1016/j.commatsci.2013.06.014
- [16] Sinaoui A, Akkari FC, Kanzari M. Investigation of the effect of obliquely incident deposition on structural, morphological and optical properties of CuInS2 thin films. Res Rev Mater Sci Chem. 2013;2: 1–17.
- [17] Rahchamani SZ, Dizaji HR, Ehsani MH. Study of structural and optical properties of ZnS zigzag nanostructured thin films. Appl Surf Sci. 2015;356: 1096–104. doi:10.1016/j.apsusc.2015.08.224.
- [18] Hawkeyea MM, Brett MJ. Glancing angle deposition: fabrication, properties, and applications of micro- and nanostructured thin films. J Vac Sci Technol. 2007;25: 1317–1335. doi:10.1116/1.2764082.
- [19] Robbie K, Sit JC, Brett MJ. Advanced techniques for glancing angle deposition. J Vac Sci Technol B: Nanotechnol Microelectron. 1998;16: 1115–1122. doi:10.1116/1.590019.
- [20] Lopes C, Pedrosa P, Martin N, Barradas NP, Alves E, Vaz F. Study of the electrical behavior of nanostructured Ti–Ag, thin films, prepared by glancing angle deposition. Mater Lett. 2015;157: 188–192.
- [21] Grüner C, Liedtke S, Bauer J, Mayr SG, Rauschenbach B. Morphology of thin films formed by oblique physical vapor deposition. ACS Appl Nano Mater. 2018;1: 1370–1376.
- [22] Siyanaki FH, Dizaji HR, Ehsani MH, Khorramabadi S. The effect of substrate rotation rate on physical properties of cadmium telluride films prepared by a glancing angle deposition method. Thin Solid Films. 2015;577: 128–133. doi:10.1016/j.tsf.2015.01.066.
- [23] Kwon H, Lee SH, Kim JK. Three-dimensional metal-oxide nanohelix arrays fabricated by oblique angle deposition: fabrication, properties, and applications. Nanoscale Res Lett. 2015;10(369): 1–12. doi:10.1186/s11671-015-1057-2.
- [24] Hawkeye MM, Joseph R, Sit JC, Brett MJ. Coupled defects in one-dimensional photonic crystal films fabricated with glancing angle deposition. Opt Express. 2010;18: 13220–13226. doi:10.1364/OE.18.013220.
- [25] Samadi M, Zirak M, Naseri A, Khorashadizade E, Moshfegh AZ. Recent progress on doped ZnO nanostructures for visible-light photocatalysis. Thin Solid Films. 2016;605: 2–19. doi:10.1016/j.tsf.2015.12.064.
- [26] Tseng CC, Hsieh JH, Wu W. Microstructural analysis and optoelectrical properties of Cu2O, Cu2O–Ag, and Cu2O/Ag2O multilayered nanocomposite thin films. Thin Solid Films. 2011;519: 5169–5173. doi:10.1016/j.tsf.2011.01.081.
- [27] Taufik A, Saleha R. The influence of graphene on silver oxide synthesis through microwave assisted method. AIP Conf Proc. 2018;2023: 020018. doi:10.1063/1.5064015.
- [28] Akkari FC, Abdelkader D, Gallas B, Kanzari M. Ellipsometric characterization and optical anisotropy of nanostructured CuIn3S5 and CuIn5S8 thin films. Mater Sci Semicond Proc. 2017;71: 156–160. doi:10.1016/j.mssp.2017.07.023.
- [29] Tounsi N, Barhoumi A, Akkari FC, Kanzari M, Guermazi H, Guermazi S. Structural and optical characterization of copper oxide composite thin films elaborated by GLAD technique. Vacuum. 2015;121: 9–17. doi:10.1016/j.vacuum.2015.07.011
- [30] Warren BE. X-ray diffraction. New York: Dover;1990.
- [31] Karen P, Woodward PM. Liquid-mix disorder in crystalline solids: ScMnO3. J Solid State Chem. 1998;141: 78–88. doi:10.1006/jssc.1998.7918.
- [32] Kose S, Atay F, Bilgin V, Akyuz I. Some physical properties of copper oxide films: the effect of substrate temperature. Mater Chem Phys. 2008;111: 351–358. doi:10.1016/j.matchemphys.2008.04.025.
- [33] Harizi A, Sinaoui A, Chaffar Akkari F, Kanzari M. Impedance spectroscopy characterization of anisotropic nano-sculptured copper oxide Cu2O thin films for optoelectronic applications. Mater Sci Semicond Proc. 2016;41: 450–456. doi:10.1088/1361-6641/ab0ecf.
- [34] Ehsani MH, Dizaji HR, Azizi S, Mirmahalle SFG, Siyanaki FH. Optical and structural properties of cadmium telluride films grown by glancing angle deposition. Phys Scr. 2013;88: 025602. doi:10.1088/0031-8949/88/02/025602.
- [35] Jo H, Yang JH, Lee JH, Lim JW, Lee J, Shin M, et al. Transparent bifacial a-Si:H solar cells employing silver oxide embedded transparent rear electrodes for improved transparency. J Sol Energy. 2018;170: 940–946. doi:10.1016/j.solener.2018.05.096.
- [36] Fakhri MA. Annealing effects on opto-electronic properties of Ag2O films growth using thermal evaporation techniques. Int J Nanoelectron Mater. 2016;9: 93–102.
- [37] Belgacem S, Bennaceur R. Propriétés optiques des couches minces de SnO2 et CuInS2 airless spray. Revue Phys Appl. 1990;25: 1245–58. doi:10.1051/rphysap:0199000250120124500.
- [38] Swanepoel R. Determination of surface roughness and optical constants of inhomogeneous amorphous silicon films. J Phys E: Sci Instrum. 1984;17: 896.
- [39] Wang S, Fu X, Xia G, Wang J, Shao J, Fan Z. Structure and optical properties of ZnS thin films grown by glancing angle deposition. Appl Surf Sci. 2006;252: 8734–8737. doi:10.1016/j.apsusc.2005.12.035.
- [40] Woo SH, Hwangbo CK. Optical anisotropy of microstructure-controlled TiO2 films fabricated by glancing-angle deposition (GLAD). J Korean Phys Soc. 2006;48: 1199–1204.
- [41] Sobahan KMA, Park YJ, Hwangbo CK. Influence of deposition angle on the properties of ZrO2 thin films fabricated by using oblique angle deposition. J Korean Phys Soc. 2010;56: 1282–1286. doi:10.3938/jkps.56.1282.
- [42] Charles C, Martin N, Devel M, Ollitrault J, Billard A. Correlation between structural and optical properties of WO3 thin films sputter deposited by glancing angle deposition. Thin Solid Films. 2013;534: 275.
- [43] Tauc J. Optical properties and electronic structure of amorphous Ge and Si. Mater Res Bull. 1968;3: 37–46. doi:10.1016/0025-5408(68)90023-8.
- [44] Wei J, Lei Y, Jia H, Cheng J, Hou H, Zheng Z. Controlled in situ fabrication of Ag2O/AgO thin films by a dry chemical route at room temperature for hybrid solar cells. Dalton Trans. 2014;43(29): 11333–11338. Doi:10.1039/c4dt00827h43.
- [45] Varkey AJ, Fort AF. Some optical properties of silver peroxide (AgO) and silver oxide (Ag2O) films produced by chemical-bath deposition. Sol Energy Mater Sol Cells. 1993;29: 253–259. doi:10.1016/0927-0248(93)90040-A.
- [46] Xaba T, Moloto MJ, Al-Shakban M, Malik MA, O’Brien P, Moloto N. The effect of temperature on the growth of Ag2O nanoparticles and thin films from bis(2-hydroxy-1-naphthaldehydato)silver(I) complex by the thermal decomposition of spin–coated films. Mater Sci Semicond Proc. 2017;71: 109–15.
- [47] Abdelkader D, Ben Rabeh M, Khemiri N, Kanzari M. Investigation on optical properties of SnxSbySz sulfosalts thin films. Mater Sci Semicond Proc. 2014;21: 14–19. doi:10.1016/j.mssp.2014.01.027.
Uwagi
Opracowanie rekordu ze środków MEiN, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2022-2023).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0b0f9c1-7aea-4f2f-859c-3e56aa096a59