PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of Field Data for Risk Assessment of Vapor Intrusion at a Trichloroethylene-Contaminated Site – A Case Study in Taiwan

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
The potential risks of vapor intrusion (VI) can arise from low bulk soil contaminant concentration existing in shallow soils beneath a building foundation. To assess VI risks for such a contamination scenario, a comprehensive study was conducted on a factory building located at a trichloroethylene (TCE)-contaminated site. This study involved the integration of various types of field data, including groundwater, bulk soil, soil gas and indoor air data, along with the utilization of the Vapor Intrusion Screening Level (VISL) calculator. Previously observed high TCE concentrations in soil gas are attributed to accumulation of TCE vapor within the unsaturated soil beneath the building floor, since ground surface is extensively paved at this site. These soil gas data do not directly correlate with the magnitudes of bulk soil and/or groundwater TCE concentration with the linear adsorption model. Soil gas TCE concentration exceeding 107 μg/m3 (or bulk soil concentration exceeding 18.9 mg/kg) observed in shallow soils (at a depth of less than 1 m ) may pose health risk to the workers inside the building due to VI, as we have detected TCE vapor concentrations exceeding indoor air screening level several times in the past. This bulk soil TCE concentration, however, falls below soil pollution control standards for TCE, i.e., 60 mg/kg, in Taiwan. As a result, soil remediation is not considered at this site. Soil gas TCE concentrations have reduced to less than 106 μg/m3 after two years of groundwater remediation work at this site. However, we have observed significantly higher soil gas TCE levels at a depth of 0.5 m compared to other depths. This discrepancy raises suspicions that an amount of TCE may still be trapped within the shallow soils that are not reached by groundwater table.
Rocznik
Strony
112--123
Opis fizyczny
Bibliogr. 27 poz., rys., tab.
Twórcy
  • Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
autor
  • Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
autor
  • Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
  • Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
  • Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
autor
  • Department of Environmental Engineering and Science, Feng Chia University, Taichung, Taiwan
Bibliografia
  • 1. Bahrami H., Eslami A., Nabizadeh R., Mohseni-Bandpi A., Asadi A., Sillanpää M. 2018. Degradation of trichloroethylene by sonophotolytic-activated persulfate processes: Optimization using response surface methodology. J. Clean Prod. 198(10), 1210–1218.
  • 2. Chiou C.T., Peters L.J., Freed V.H. 1979. A physical concept of soil-water equilibria for nonionic organic compounds. Science, New series, 206 (4420), 831–832.
  • 3. Chinese National Standards-Taiwan (CNS). Method of test for particle-size analysis of soils (CNS 11776–2011); method of laboratory determination of moisture content of soil (CNS 5091–1986); method of test for specific gravity of soils (CNS 5090–1988) and method of test for classification of soils for engineering purposes (CNS 12387–1988).
  • 4. Feenstra S., Mackay D.M., Cherry J.A.. 1991. A method for assessing residual NAPL based on organic chemical concentrations in soil samples. Ground Water Monitoring Review, 11:128–136.
  • 5. GPCS. 2013. Groundwater Pollution Control Standards, Laws and Regulations Database of the Republic of China (Taiwan).
  • 6. HDOH. 2017. Hawai’i Department of Health, Technical Guidance Manual (TGM) for the implementation of the Hawai’i State Contingency Plan, section 7 soil vapor and indoor air sampling guidance, Interim Final-December 2017. Retrieved from https://health.hawaii.gov/heer/tgm/section-07/
  • 7. Johnson P.C., Ettinger A.R.. 1991. Heuristic Model for Predicting the Intrusion Rate of Contaminant Vapors into Buildings. Environ Sci Technol. 25: 1445–1452.
  • 8. Lahvis M.A. and Ettinger R.A. 2021. Improving risk-bases screening at vapor intrusion sites in California. Groundwater Monitoring and Remediation. 41(2), 73–86.
  • 9. Lin K.-S., Mdlovu N.V., Chen C.-Y., Chiang C.L.. 2018. Degradation of TCE, PCE, and 1, 2–DCE DNAPLs in contaminated groundwater using polyethylenimine-modified zero-valent iron nanoparticles. J. Clean Prod. 175(20), 456–466.
  • 10. Ma J. and and Lahvis M. 2020. Rationale for soilgas sampling to improve vapor intrusion risk assessment in China. Groundwater Monitoring and Remediation, doi: 10.1111/gwmr.12361.
  • 11. Ma J., McHugh T., Beckley L., Lahvis M., DeVaull G. and Jiang L. 2020. Vapor intrusion investigations and decision-making: a critical review. Environ. Sci. Technol. 54, 7050−7069.
  • 12. National Institute of Environmental Analysis (NIEA M711.04C). Determination of Volatile Organic Compounds by Gas Chromatography/Mass Spectrometry. https://www.epa.gov.tw/niea/749332B05E54012B/63523f91–2884–4487-afd1–9c15bb01fb72
  • 13. National Institute of Environmental Analysis (NIEA A715.16B). Determination of Volatile Organic Compounds in air-canister/ Gas Chromatography/Mass Spectrometry. https://www.epa.gov.tw/niea/D1C735A4B99E3029/67e34e86–8e6f-4e36–8206-cee16644d450
  • 14. National Institute of Environmental Analysis (NIEA A722.76B). Determination of gaseous organic chemicals in discharge pipe-sampling bag/gas chromatography/flame ionization detector. https://www.epa.gov.tw/niea/D1C735A4B99E3029/0008b139–301c-4411–8d94-a501fe1108ba.
  • 15. National Institute of Environmental Analysis (NIEA W785.55B). Determination of organic chemicals in water/purge and trap/gaschromatography/Mass Spectrometry. https://www.moenv.gov.tw/nera/32A85B63C9EC18C0/f2c514d7–961e-4e06–858c-ba9ce251375a
  • 16. SPCS. 2011. Soil Pollution Control Standards, Laws and Regulations Database of the Republic of China (Taiwan).
  • 17. Taiwan VCM corporation (TVCM). 2022. Groundwater remediation progress report for Gyeongcheon Company (in Chinese).
  • 18. United States Environmental Protection Agency (USEPA). 2014a. EPA Region 9 Response Action Levels and Recommendations to Address Near-Term Inhalation Exposures to TCE in Air from Subsurface Vapor Intrusion. Region 9, San Francisco, California. July 9.
  • 19. USEPA. 2014b. OSWER Directive 9200. 1–120. Human Health Evaluation Manual, Supplemental Guidance: Update of Standard Default Exposure Factors. https://www.epa.gov/risk/oswer-directive-92001–120.
  • 20. USEPA. 2015a. Challenges in bulk soil sampling and analysis for vapor intrusion screening of soil. https://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=P100NDQL.txt.
  • 21. USEPA. 2015b. OSWER Technical Guide for Assessing and Mitigating the Vapor Intrusion Pathway from Subsurface Vapor Sources to Indoor Air. OSWER Publication 9200.2–154, U.S. Environmental Protection Agency, Washington, DC, USA.
  • 22. USEPA. 2016. EPA Region 7 Action Levels for Trichloroethylene in Air. Lenexa, Kansas. November 2
  • 23. USEPA. 2017. Documentation for EPA’s implementation of the Johnson and Ettinger Model to evaluate site specific vapor intrusion into buildings, Version 6.0, Office of Superfund Remediation and Technology Innovation. Washington, D.C.
  • 24. USEPA RSLs (Regional Screening Levels). 2015 and May 2023. Updated biannually, available online at http://www.epa.gov/risk/regional-screening-table.
  • 25. Zhang R., Jiang L., Zhong M., Han D., Zheng R., Fu Q., Zhou Y., Ma J.. 2019. Applicability of soil concentration for VOC-contaminated site assessments explored using field data from the Beijing-Tianjin-Hebei urban agglomeration. Environ Sci Technol. 53, 789–797.
  • 26. Yao Y., Xiao Y., Luo J., Wang G., Ström J. and Suuberg E. 2020. High-frequency fluctuations of indoor pressure: a potential driving force for vapor intrusion in urban areas. Science of The Total Environment 710, 25 March 2020, 136309
  • 27. Yuh Shan Environmental Engineering corporation, LTD. (YSEE). 2019. Groundwater remediation planning report for Gyeongcheon Company (in Chinese)
Uwagi
Opracowanie rekordu ze środków MNiSW, umowa nr SONP/SP/546092/2022 w ramach programu "Społeczna odpowiedzialność nauki" - moduł: Popularyzacja nauki i promocja sportu (2024).
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0aeb613-3902-4669-8bb6-aff892b5c257
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.