PL EN


Preferencje help
Widoczny [Schowaj] Abstrakt
Liczba wyników
Tytuł artykułu

Analysis of the influence of karst cave parameters on surface settlement in TBM tunnelling

Treść / Zawartość
Identyfikatory
Warianty tytułu
Języki publikacji
EN
Abstrakty
EN
In order to study the influence of multiple karst cave factors on surface settlement during tunnel boring machine (referred to TBM hereinafter) tunnelling, a three-dimensional numerical model is built by taking a subway project as an example and combining it with MIDAS GTS NX finite element software. Secondly, the influence of the radius, height, angle, vertical net distance and horizontal distance of the karst cave on maximum surface settlement is studied and sorted under the two working conditions of treatment and lack of treatment using the gray correlation analysis method. Additionally, a multi-factor numerical model of the untreated karst cave is established. Finally, based on the preceding research, a multi-factor prediction model for maximum surface settlement is proposed and tested. The results reveal that when the karst cave is not treated, the radius and height of the karst cave have a significant effect on maximum surface settlement. Following cave treatment however, the influence of the cave parameters on maximum settlement of the surface is greatly reduced. The calculating model created in this study offers excellent prediction accuracy and good adaptability.
Rocznik
Strony
art. no. e150110
Opis fizyczny
Bibliogr. 22 poz., rys., tab.
Twórcy
autor
  • School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan Hubei 430063, China
autor
  • School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan Hubei 430063, China
autor
  • School of Transportation and Logistics Engineering, Wuhan University of Technology, Wuhan Hubei 430063, China
autor
  • Wuhan Municipal Engineering Design and Research Institute Co., Ltd. Wuhan Hubei 430063, China
autor
  • China Railway Seven Bureau Group Fourth Engineering Co., Ltd. Wuhan 430200, China
Bibliografia
  • [1] D. Ford, “Jovan Cvijić and the founding of karst geomorphology,” Environ. Geol., vol. 51, no. 5, pp. 675–684, 2007, doi: 10.1007/s00254-006-0379-x.
  • [2] G. Chunqing, W. Li, and W. Hongtao, “The research of karst ecological geology in China,” Ecol. Environ., vol. 2, pp. 275–281, 2005, doi: 10.16258/j.cnki.1674-5906.2005.02.030.
  • [3] Z. Mingjie, A. Jianhua, L. Xuhua, and W. Biao, “Model testing research on influence of karst cave size on stability of surrounding rockmasses during tunnel construction,” Chin. J. Rock Mech. Eng., vol. 2, pp. 213–217, 2004.
  • [4] Y. Fang, C. He, A. Nazem, Z.G. Yao, and J. Grasmick, “Surface settlement prediction for EPB shield tunneling in sandy ground,” KSCE J. Civil Eng., vol. 21, no. 7, pp. 2908–2918, 2017, doi: 10.1007/s12205-017-0989-8.
  • [5] L. Li, S. Sun, J. Wang, W. Yang, S. Song, and Z. Fang, “Experimental study of the precursor information of the water inrush in shield tunnels due to the proximity of a water-filled cave,” Int. J. Rock Mech. Mining Sci., vol. 130, p. 104320, 2020, doi: 10.1016/j.ijrmms.2020.104320.
  • [6] L. Shucai,W. Kang, L. Liping, Z. Zongqing, S. Shaoshuai, and L. Shang, “Mechanical mechanism and development trend of water-inrush disasters in karst tunnels,” Chin. J. Theor. Appl. Mech., vol. 49, no. 1, pp. 22–30, 2017, doi: 10.6052/0459-1879-16-345.
  • [7] B, Zou, M. Chibawe, B. Hu, Y. Deng, “A comparative analysis of artificial neural network predictive and multiple linear regression models for ground settlement during tunnel construction,” Arch. Civ. Eng., vol. 69, no. 2, pp. 503–515, 2023, doi: 10.24425/ace.2023.145281.
  • [8] W. Bogusz, T. Godlewski, and A. Siemińska-Lewandowska, “Parameters used for prediction of settlement trough due to TBM tunnelling,” Arch. Civ. Eng., vol. 67, no. 4, pp. 351–367, 2021, doi: 10.24425/ace.2021.138504.
  • [9] T. Daiming, Q. Taiyue, and M. Yangchun, “Numerical analysis and research on surrounding rock stability of lateral karst cave tunnel,” Chinese J. Rock Mech. Eng., vol. 28, no. A2, pp. 3497–3503, 2009, doi: 10.3321/j.issn:1000-6915.2009.z2.031.
  • [10] Y. Jiemin, “Numerical Simulation of the Stability of Subway Tunnel in Karst Regions,” M.Sc. thesis, South China University of Technology, Guangzhou China, 2011.
  • [11] M. Yangchun and Z. Xiaojun, “Numerical simulation analysis on surrounding rock deformation characteristic of tunnel with karst cave beside,” Hydrogeol. Eng. Geol., vol. 35, no. 2, pp. 30–34, 2008.
  • [12] L. Daoyan, X. Jianbin, L. Zhong, and S. Xiaohai, “Numerical Analysis on Influence of Concealed Karst Caverns upon Stability of Metro Shield Tunnel,” Tunnel Constr., vol. 40, no. A2, pp. 151–160, 2020, doi: 10.3973/j.issn.2096-4498.2020.S2.020.
  • [13] Z. Fang et al., “The Influence of Different Karst Cave Filling Material Strengths on Stratum Stability During Shield Tunneling,” Geotech. Geolog. Eng., vol. 41, no. 2, pp. 1309–1323, 2023, doi: 10.1007/s10706-022-02337-w.
  • [14] L. Yuanhai, Y. Su, Y. Jun, and G. Kunrong, “Influence of a Large Karst Cave on Rock Mass Stability during Tunnelling,” Mod. Tunn. Technol., vol. 53, no. 4, pp. 52–60, 2016, doi: 10.13807/j.cnki.mtt.2016.04.008.
  • [15] W. Xiangguo, “Sensitivity Analysis of Effect of Different Cavern Conditions on Excavation of Long-Span Tunnels,” J. Chin. Foreign Highway, vol. 41, no. 4, pp. 252–255, 2021, doi: 10.14048/j.issn.1671-2579.2021.04.050.
  • [16] G. Rui, L. Chen, Z. Bo, and S. Bo, “Impact of Karst Cave on Tunnel Structure Deformation and Stress:a Case Study of the Dafang Tunnel,” Sci. Technol. Eng., vol. 20, no. 9, pp. 3770–3777, 2020.
  • [17] L. Ting, G. Xin, H. Fan, J. Yanfei, H. Jinlong, and L. Lele, “Numerical Analysis of Influence of Water Pressure of Overlying Karst Cave on Tunnel Water Inrush,” Tunnel Constr., vol. 37, no. 2, pp. 167–172, 2017, doi: 10.3973/j.issn.1672-741X.2017.02.007.
  • [18] Deng Julong, Basic Method of Gray System. 1987.
  • [19] X. Haixu and C. Rong, “Influence of Grouting Reinforcement of Karst Caves on Subway Shield Tunnel Construction,” J. Northeast Electr. Power Univ., vol. 41, no. 6, pp. 120–128, 2021, doi: 10.19718/j.issn.1005-2992.2021-06-0120-09.
  • [20] C. Binghua, C. Deshan, F. Xiaola, and L. Zhongchao, “Study on Surface Deformation Pattern Caused by Small Shield Tunneling in Complex Strata in Karst Area of Wuhan,” Safety Environ. Eng., vol. 27, no. 1, pp. 69–74, 2020, doi: 10.13578/j.cnki.issn.1671-1556.2020.01.011.
  • [21] G. Xiaogan, “Study on the influence of hidden karst cave on tunnel surrounding rock stress and surface settlement,” Eng. Mach. Maint., vol. 1, pp. 67–69, 2023, doi: 10.3969/j.issn.1006-2114.2023.01.022.
  • [22] G. Yan, W. Xiaodong, and T. Jiayi, “Analysis and prediction of the influence of underground karst cave spatial morphology on land subsidence based on machine learning,” Acta Scientiarum Naturalium Universitatis Sunyatseni, vol. 62, no. 2, pp. 83–92, 2023, doi: 10.13471/j.cnki.acta.snus.2022d019.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0a1dd47-653c-49db-a514-66a7d6fbef09
JavaScript jest wyłączony w Twojej przeglądarce internetowej. Włącz go, a następnie odśwież stronę, aby móc w pełni z niej korzystać.