Tytuł artykułu
Wybrane pełne teksty z tego czasopisma
Identyfikatory
Warianty tytułu
Języki publikacji
Abstrakty
Soil nitrogen mineralization strongly affects N availability, thus impacting the primary productivity in ecosystems. The seasonal environmental changes affect soil mineralization in restored sandy grasslands such as a studied mobile dune (MD), a semi-fixed dune (SFD), a fixed dune (FD) and a grassland (G). During the growing season, we examined the association of soil N mineralization rate with vegetation characteristics, soil properties and climatic factors through the multivariate stepwise regression model. The vegetation cover, species diversity, above- and belowground biomass, soil carbon, nitrogen, soil water content (SWC), pH, electrical conductivity, very fine sand, clay and silt fractions increased during sandy grassland restoration. The NH4+-N concentration in MD and SFD was higher than that in FD and G, while NO3--N and inorganic N concentration showed a reverse trend. The NH4+N, NO3--N and inorganic N concentrations in MD, SFD and FD reached to the highest values in June, while in G they were highest in May. The net mineralization and nitrification rates increased with sandy grassland restoration; both of these rates were much greater in June than in other months at all sites. Regression analysis showed that the NO3--N concentration, SWC, pH of the soil and precipitation could explain 75% of the total variation in net nitrification rate, and the NO3--N concentration and precipitation could explain 59% of the total variation in the net mineralization rate. These results illustrate that the sandy grassland restoration can enhance the soil N availability, with soil N mineralization mainly determined by the changes of the NO3--N concentration and precipitation.
Czasopismo
Rocznik
Tom
Strony
283--295
Opis fizyczny
Bibliogr. 58 poz., rys., tab., wykr.
Twórcy
autor
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
autor
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
autor
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
autor
- Naiman Desertification Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
autor
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
autor
- Urat Desert-grassland Research Station, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou,730000, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
Bibliografia
- 1. Abed R. M. M., De Beer D., Stief P. 2015 – Functional-Structural Analysis of Nitrogen-Cycle Bacteria in a Hypersaline Mat from the Omani Desert – Geomicrobiol. J. 32: 119-129.
- 2. Bhatti A., McClean C. J., Cresser M. S. 2014 – What limits soil N-cycling and potential losses under grassland at Hob Moor, York, UK? – Geoderma, 232: 619-627.
- 3. Billings S. A., Schaeffer S. M., Evans R. D. 2004 – Soil microbial activity and N availability with elevated CO2 in Mojave desert soils – Global Biogeochem. Cy. 18: 1-11.
- 4. Cao Y. Z., Wang X. D., Lu X. Y., Yan Y., Fan J. H. 2013 – Soil organic carbon and nutrients along an alpine grassland transect across Northern Tibet – J. Mt. Sci. 10: 564-573.
- 5. Cong W. F., van Ruijven J., van der Werf W., De Deyn G. B., Mommer L., Berendse F., Hoffland E. 2015 – Plant species richness leaves a legacy of enhanced root litter-induced decomposition in soil – Soil Biol. Biochem. 80: 341-348.
- 6. Das A. K., Boral L., Tripathi R. S., Pandey H. N. 1997 – Nitrogen mineralization and microbial biomass-N in a subtropical humid forest of Meghalaya, India – Soil Biol. Biochem. 29: 1609-1612.
- 7. Eno C. F. 1960 – Nitrate production in the field by incubating the soil in buried polyethylene bags – Soil Sci. Soc. Amer. Pro. 24: 277-279.
- 8. Fornara D. A., Tilman D. 2008 – Plant functional composition influences rates of soil carbon and nitrogen accumulation – J. Ecol. 96: 314-322.
- 9. Gelfand I., Grunzweig J. M., Yakir D. 2012 – Slowing of nitrogen cycling and increasing nitrogen use efficiency following afforestation of semi-arid shrubland – Oecologia, 168: 563575.
- 10. Guo Y. R., Zhao H. L., Zuo X. A., Drake S., Zhao X. Y. 2008 – Biological soil crust development and its topsoil properties in the process of dune stabilization, Inner Mongolia, China – Environ. Geol. 54: 653-662.
- 11. Hooker T. D., Stark J. M. 2008 – Soil C and N cycling in three semiarid vegetation types: Response to an in situ pulse of plant detritus – Soil Biol. Biochem. 40: 2678-2685.
- 12. Hu B., Zhou M. H., Dannenmann M., Saiz G., Simon J., Bilela S., Liu X. P., Hou L., Chen H., Zhang S. X., Butterbach-Bahl K., Rennenberg H. 2017 – Comparison of nitrogen nutrition and soil carbon status of afforested stands established in degraded soil of the Loess Plateau, China – Forest Ecol. Manag. 389: 46-58.
- 13. Huang Z. Q., Wan X. H., He Z. M., Yu Z. P., Wang M. H., Hu Z. H., Yang Y. S. 2013 – Soil microbial biomass, community composition and soil nitrogen cycling in relation to tree species in subtropical China – Soil Biol. Biochem. 62: 68-75.
- 14. Jager M. M., Richardson S. J., Bellingham P. J., Clearwater M. J., Laughlin D. C. 2015 – Soil fertility induces coordinated responses of multiple independent functional traits – J. Ecol. 103: 374-385.
- 15. James J. J., Tiller R. L., Richards J. H. 2005 – Multiple resources limit plant growth and function in a saline-alkaline desert community – J. Ecol. 93: 113-126.
- 16. Javad M., Mehdi H., Prevosto B. 2017 – Effects of vegetation patterns and environmental factors on woody regeneration in semi-arid oak-dominated forests of western Iran – J. Arid Land 9: 368-378.
- 17. Ke P. J., Miki T., Ding T. S. 2015 – The soil microbial community predicts the importance of plant traits in plant-soil feedback – New Phytol. 206: 329-341.
- 18. Li Y. Q., Brandle J., Awada T., Chen Y. P., Han J. J., Zhang F. X., Luo Y. Q. 2013 – Accumulation of carbon and nitrogen in the plant-soil system after afforestation of active sand dunes in China's Horqin Sandy Land – Agr. Ecosyst. Environ. 177: 75-84.
- 19. Li X. J., Yang H. T., Shi W. L., Li Y. F., Guo Q. 2018 – Afforestation with xerophytic shrubs accelerates soil net nitrogen nitrification and mineralization in the Tengger Desert, Northern China – Catena, 169: 11-20.
- 20. Li M., Zhou X. H., Zhang Q. F., Cheng X. L. 2014 – Consequences of afforestation for soil nitrogen dynamics in central China – Agr. Ecosyst. Environ. 183: 40-46.
- 21. Liao X. L., Inglett P. W., Inglett K. S. 2016 – Seasonal patterns of nitrogen cycling in subtropical short-hydroperiod wetlands: Effects of precipitation and restoration – Sci. Total Environ. 556: 136-145.
- 22. Loick N., Dixon E., Abalos D., Vallejo A., Matthews P., McGeough K., Watson C., Baggs E. M., Cardenas L. M. 2017 – “Hot spots” of N and C impact nitric oxide, nitrous oxide and nitrogen gas emissions from a UK grassland soil – Geoderma, 305: 336-345.
- 23. Lozano Y. M., Hortal S., Armas C., Pugnaire F. I. 2014 – Interactions among soil, plants, and microorganisms drive secondary succession in a dry environment – Soil Biol. Biochem. 78: 298-306.
- 24. Niklaus P. A., Wardle D. A., Tate K. R. 2006 – Effects of plant species diversity and composition on nitrogen cycling and the trace gas balance of soils – Plant Soil 282: 83-98.
- 25. Ochoa-Hueso R., Maestre F. T., de los Rios A., Valea S., Theobald M. R., Vivanco M. G., Manrique E., Bowker M. A. 2013 – Nitrogen deposition alters nitrogen cycling and reduces soil carbon content in low-productivity semiarid Mediterranean ecosystems – Environ. Pollut. 179: 185-193.
- 26. Palatinszky M., Herbold C., Jehmlich N., Pogoda M., Han P., von Bergen M., Lagkouvardos I., Karst S. M., Galushko A., Koch H., Berry D., Daims H., Wagner M. 2015 – Cyanate as an energy source for nitrifiers – Nature, 524: 105-108.
- 27. Peichl M., Leava N. A., Kiely G. 2012 – Above- and belowground ecosystem biomass, carbon and nitrogen allocation in recently afforested grassland and adjacent intensively managed grassland – Plant Soil, 350: 281-296.
- 28. Qiao C. L., Liu L. L., Hu S. J., Compton J. E., Greaver T. L., Li Q. L. 2015 – How inhibiting nitrification affects nitrogen cycle and reduces environmental impacts of anthropogenic nitrogen input – Global Change Biol. 21: 1249-1257.
- 29. Raison R. J., Connell M. J., Khanna P. K. 1987 – Methodology for Studying Fluxes of Soil Mineral-N in situ – Soil Biol. Biochem. 19: 521-530.
- 30. Robinson J. B. 1963 – Nitrification in a New Zealand grassland soil – Plant Soil, 19:173-183.
- 31. Rosenzweig S. T., Carson M. A., Baer S. G., Blair J. M. 2016 – Changes in soil properties, microbial biomass, and fluxes of C and N in soil following post-agricultural grassland restoration – Appl. Soil Ecol. 100: 186-194.
- 32. Smith S. R., Hadley P. 1989 – A Comparison of Organic and Inorganic Nitrogen Fertilizers - Their Nitrate-N and Ammonium-N Release Characteristics and Effects on the Growth-Response of Lettuce (Lactuca Sativa L Cv Fortune) – Plant Soil, 115: 135-144.
- 33. Sousa F. P., Ferreira T. O., Mendonca E. S., Romero R. E., Oliveira J. G. B. 2012 – Carbon and nitrogen in degraded Brazilian semi-arid soils undergoing desertification – Agr. Ecosyst. Environ. 148: 11-21.
- 34. Srivastava P., Raghubanshi A. S., Singh R., Tripathi S. N. 2015 – Soil carbon efflux and sequestration as a function of relative availability of inorganic N pools in dry tropical agroecosystem – Appl. Soil Ecol. 96: 1-6.
- 35. Su Y. Z., Li Y. L., Zhao H. L. 2006 – Soil properties and their spatial pattern in a degraded sandy grassland under post-grazing restoration, inner Mongolia, northern China – Biogeochemistry, 79: 297-314.
- 36. Su L., Yang Y. S., Li X. Y., Wang D., Liu Y. C., Liu Y. Z., Yang Z. L., Li M. M. 2018 – Increasing plant diversity and forb ratio during the revegetation processes of trampled areas and trails enhances soil infiltration – Land Degrad. Dev. 29: 4025-4034.
- 37. Su Y. Z., Zhao H. L., Li Y. L., Cui J. Y. 2004 – Influencing mechanisms of several shrubs on soil chemical properties in semiarid Horqin Sandy Land, China – Arid Land Res. Manag. 18: 251-263.
- 38. Su Y. Z., Zhao W. Z., Su P. X., Zhang Z. H., Wang T., Ram R. 2007 – Ecological effects of desertification control and desertified land reclamation in an oasis-desert ecotone in an and region: A case study in Hexi Corridor, northwest China – Ecol. Eng. 29: 117-124.
- 39. Tapia-Torres Y., Lopez-Lozano N. E., Souza V., Garcia-Oliva F. 2015 – Vegetation-soil system controls soil mechanisms for nitrogen transformations in an oligotrophic Mexican desert – J. Arid. Environ. 114: 62-69.
- 40. Taylor Q. A., Midgley M. G. 2018 – Prescription side effects: Long-term, high-frequency controlled burning enhances nitrogen availability in an Illinois oak-dominated forest – For. Ecol. Manage. 411: 82-89.
- 41. Tho B. T., Lambertini C., Eller F., Brix H., Sorrell B. K. 2017 – Ammonium and nitrate are both suitable inorganic nitrogen forms for the highly productive wetland grass Arundo donax, a candidate species for wetland paludiculture – Ecol. Eng. 105: 379-386.
- 42. Wang H. L., Deng N., Wu D. Y., Hu S., Kou M. 2017 – Long-termnet transformation and quantitative molecular mechanisms of soil nitrogen during natural vegetation recovery of abandoned farmland on the Loess Plateau of China – Sci. Total Environ. 607: 152-159.
- 43. Wolkovich E. M., Lipson D. A., Virginia R. A., Cottingham K. L., Bolger D. T. 2010 – Grass invasion causes rapid increases in ecosystem carbon and nitrogen storage in a semiarid shrubland – Global Change Biol. 16: 1351-1365.
- 44. Xu X. L., Ma K. M., Fu B. J., Liu W., Song C. J. 2009 – Soil and water erosion under different plant species in a semiarid river valley, SW China: the effects of plant morphology – Ecol. Res. 24: 37-46.
- 45. Xu X. L., Ma K. M., Fu B. J., Song C. J., Liu W. 2008 – Relationships between vegetation and soil and topography in a dry warm river valley, SW China – Catena, 75: 138-145.
- 46. Yang L. L., Zhang F. S., Gao Q. A., Mao R. Z., Liu X. J. 2010 – Impact of land-use types on soil nitrogen net mineralization in the sandstorm and water source area of Beijing, China – Catena, 82: 15-22.
- 47. Yao H. Y., Campbell C. D., Qiao X. R. 2011 – Soil pH controls nitrification and carbon substrate utilization more than urea or charcoal in some highly acidic soils – Biol. Fert. Soils, 47: 515-522.
- 48. Zhang C., Liu G. B., Song Z. L., Wang J., Guo L. 2018 – Interactions of soil bacteria and fungi with plants during long-term grazing exclusion in semiarid grasslands – Soil Biol. Biochem. 124: 47-58.
- 49. Zhang C., Liu G. B., Xue S., Wang G. L. 2016 – Soil bacterial community dynamics reflect changes in plant community and soil properties during the secondary succession of abandoned farmland in the Loess Plateau – Soil Biol. Biochem. 97: 40-49.
- 50. Zhang J., Zhao H., Zhang T., Zhao X., Drake S. 2005 – Community succession along a chronosequence of vegetation restoration on sand dunes in Horqin Sandy Land – J. Arid Environ. 62: 555-566.
- 51. Zhang K., Su Y. Z., Wang T., Liu T. N. 2016 – Soil properties and herbaceous characteristics in an age sequence of Haloxylon ammodendron plantations in an oasis-desert ecotone of northwestern China – J. Arid Land, 8: 960-972.
- 52. Zhao H. L., Zhou R. L., Su Y. Z., Zhang H., Zhao L. Y., Drake S. 2007 – Shrub facilitation of desert land restoration in the Horqin Sand Land of Inner Mongolia – Ecol. Eng. 31: 1-8.
- 53. Zhou L. S., Huang J. H., Lu F. M., Han X. G. 2009 – Effects of prescribed burning and seasonal and interannual climate variation on nitrogen mineralization in a typical steppe in Inner Mongolia – Soil Biol. Biochem. 41: 796-803.
- 54. Zuazo V. H. D., Pleguezuelo C. R. R. 2008 – Soil-erosion and runoff prevention by plant covers. A review – Agron. Sustain. Dev. 28: 65-86.
- 55. Zuo X. A., Wang S. K., Zhao X. Y., Lian J. 2014 – Scale dependence of plant species richness and vegetation-environment relationship along a gradient of dune stabilization in Horqin Sandy Land, Northern China – J. Arid Land, 6: 334-342.
- 56. Zuo X. A., Zhang J., Zhou X., Zhao X. Y., Wang S. K., Lian J., Lv P., Knops J. 2015 – Changes in carbon and nitrogen storage along a restoration gradient in a semiarid sandy grassland – Acta Oecol. 69: 1-8.
- 57. Zuo X. A., Zhao X. Y., Wang S. K., Li Y. Q., Lian J., Zhou X. 2012 – Influence of dune stabilization on relationship between plant diversity and productivity in Horqin Sand Land, Northern China – Environ. Earth Sci. 67: 1547-1556.
- 58. Zuo X. A., Zhao X. Y., Zhao H. L., Zhang T. H., Guo Y. R., Li Y. Q., Huang Y. X. 2009 – Spatial heterogeneity of soil properties and vegetation-soil relationships following vegetation restoration of mobile dunes in Horqin Sandy Land, Northern China – Plant Soil 318: 153-167.
Typ dokumentu
Bibliografia
Identyfikator YADDA
bwmeta1.element.baztech-d0a1bb2f-8801-4d43-81fa-21769c454fca